Готовимся к зиме: как найти и устранить теплопотери в квартире

Алан-э-Дейл       11.09.2023 г.

Что такое пирометр, и где он применяется?

Пирометр схож с обычным комнатным термометром по принципу действия, с единственной разницей в том, что может измерять температуру большего диапазона и на расстоянии. То есть не нужно прикасаться к измеряемому объекту, чтобы узнать его температуру (хотя существуют и контактные пирометры). Это весьма удобно, так как можно измерить очень горячие поверхности (до 300 — 550 °С).

Пирометр нашел применение в следующих областях:

  • Электрика. Им производятся замеры температуры соединений. Например, если температура соединения фазной шины и провода 80 — 100 °С, а температура окружающей среды 20 °С, это означает, что контакт слабый, поэтому греется, и его нужно подтянуть.
  • Ремонт автомобиля. К примеру, вы заметили, что двигатель вашего автомобиля сильно греется, и вам нужно узнать в чем причина. Вы замеряете температуру на входном патрубке термостата и температуру радиатора. Если разница температур большая, тогда проблема может быть в работе термостата.
  • Ремонт электроники и бытовой техники. Можно проверить греется ли процессор или материнская плата в компьютере. Также можно узнать температуру подшипников в движущихся узлах электродвигателей и, если она высокая, тогда производить ремонт.
  • Расчет теплопотерь помещения. Пирометр позволит узнать температуру стен, окон и дверей, чтобы можно было рассчитать теплопотери и соответственно утеплить при необходимости.
  • Проверка теплоотдачи отопительной системы. Устройство позволит проверить, как греет котел систему индивидуального отопления, или соответствует ли температура батарей в центральном отоплении той, которая заявлена государством (по закону).

Понятие сопротивления теплопередаче

Способность того или иного материала передавать тепло называется теплопроводностью. В общем случае она всегда выше, чем больше плотность вещества и чем лучше его структура приспособлена для передачи кинетических колебаний.


Сравнение энергоэффективности различных строительных материалов

Величиной, обратно пропорциональной тепловой проводимости, является термическое сопротивление. У каждого материала это свойство принимает уникальные значения в зависимости от структуры, формы, а также ряда прочих факторов. Например, эффективность передачи тепла в толще материалов и в зоне их контакта с другими средами могут отличаться, особенно если между материалами есть хотя бы минимальная прослойка вещества в другом агрегатном состоянии. Количественно термическое сопротивление выражается как разница температур, разделённая на мощность теплового потока:

Rt = (T2 – T1) / P

где:

  • Rt — термическое сопротивление участка, К/Вт;
  • T2 — температура начала участка, К;
  • T1 — температура конца участка, К;
  • P — тепловой поток, Вт.

В контексте расчёта теплопотерь термическое сопротивление играет определяющую роль. Любая ограждающая конструкция может быть представлена как плоскопараллельная преграда на пути теплового потока. Её общее термическое сопротивление складывается из сопротивлений каждого слоя, при этом все перегородки складываются в пространственную конструкцию, являющуюся, собственно, зданием.

Rt = l / (λ·S)

где:

  • Rt — термическое сопротивление участка цепи, К/Вт;
  • l — длина участка тепловой цепи, м;
  • λ — коэффициент теплопроводности материала, Вт/(м·К);
  • S — площадь поперечного сечения участка, м2.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:

Q=S*100 Вт (150 Вт),Q — требуемое количество тепла, необходимое для обогрева всего помещения, ВтS — отапливаемая площадь помещения, м?Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м?.

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью

Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Виды пирометров

Существует несколько классифицирующих подразделений пирометров:

  1. По основной используемой методике работы:
  • инфракрасные (радиометры), использующие радиационный метод для ограниченного инфракрасного волнового диапазона; для точного наведения на цель снабжены лазерным указателем;
  • оптические пирометры, работающие в не менее, чем в двух диапазонах: инфракрасного излучения и спектра видимого света.
  1. Оптические инструменты в свою очередь делятся на:
  • яркостные (пирометры с пропадающей нитью), основанные на эталонном сравнении излучения предмета с величиной излучения нити, сквозь которую пропускается электроток. Значение силы тока и служит показателем измеряемой температуры поверхности объекта.
  • цветовой (или мультиспектральный), работающий по принципу сравнения энергетических яркостей тела в различных областях спектра, — используются как минимум два детектирующих участка.
  1. По способу прицеливания: инструменты с оптическим или лазерным прицелом.
  2. По используемому коэффициенту излучения: переменный коэффициент или фиксированный.
  3. По способу транспортировки:
  • стационарные, используемые в тяжелой промышленности;
  • переносные, используемые на участках производимых работ, для которых важна мобильность.
  1. Исходя из температурного диапазона измерений:
  • низкотемпературные (от -35…-30°С);
  • высокотемпературные (от + 400°С и выше).

Online программа расчета теплопотерь дома

Выберите город tнар = – o C

Введите температуру воздуха в помещении; tвн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада α =

Площадь наружных стен, кв.м.

Материал первого слоя λ =

Толщина первого слоя, м.

Материал второго слоя λ =

Толщина второго слоя, м.

Материал третьего слоя λ =

Толщина третьего слоя, м.

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

Введите площадь окон, кв.м.

Теплопотери через окна

Теплопотери через потолки развернуть свернуть

Выберите вид потолка

Введите площадь потолка, кв.м.

Материал первого слоя λ =

Толщина первого слоя, м.

Материал второго слоя λ =

Толщина второго слоя, м.

Материал третьего слоя λ =

Толщина третьего слоя, м.

Теплопотери через потолок

Теплопотери через пол развернуть свернуть

Выберите вид пола

Введите площадь пола, кв.м.

Материал первого слоя λ =

Толщина первого слоя, м.

Материал второго слоя λ =

Толщина второго слоя, м.

Материал третьего слоя λ =

Толщина третьего слоя, м.

Теплопотери через пол

Материал первого слоя λ =

Толщина первого слоя, м.

Материал второго слоя λ =

Толщина второго слоя, м.

Материал третьего слоя λ =

Толщина третьего слоя, м.

Площадь зоны 1, кв.м. что такое зоны?

Площадь зоны 2, кв.м.

Площадь зоны 3, кв.м.

Площадь зоны 4, кв.м.

Теплопотери через пол

Теплопотери на инфильтрацию развернуть свернуть

Введите Жилую площадь, м.

Теплопотери на инфильтрацию

О программе развернуть свернуть

Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом экономной системой отопления без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

03.12.2017 – скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).

10.01.2015 – добавлена возможность менять температуру воздуха внутри помещений.

FAQ развернуть свернуть

Как посчитать теплопотери в соседние неотапливаемые помещения?

По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?

Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение. В поле tнар ставим температуру холодной комнаты, в нашем случае гаража, со знаком “-“. -(-5) = +5 . Вид фасада выбираем “по умолчанию”. Затем считаем, как обычно.

Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно. Обсудить эту статью, оставить отзыв в Google+ | Facebook. Обсудить эту статью, оставить отзыв в Google+ | Facebook

Обсудить эту статью, оставить отзыв в Google+ | Facebook

Программное обеспечение при проектировании отопительной системы

С помощью компьютерных программ от можно рассчитать все материалы, затраченные на отопление, а также сделать подробный поэтажный план коммуникаций с отображением радиаторов, удельной теплоемкости, энергозатрат, узлов.

Фирма предлагает базовый САПР для проектных работ любой сложности – ZWCAD 2020 Professional. В нем можно не только сконструировать отопительную систему, но и создать подробную схему для строительства всего дома. Это можно реализовать благодаря большому функционалу, числу инструментов, а также работе в двух– и трехмерном пространстве.

Перед постройкой дома сделайте теплотехнический расчет. Это поможет вам не ошибиться с выбором оборудования и покупкой стройматериалов и утеплителей.

Наглядный пример расчётов

Для определения теплопотерь вычисляют величину для каждой комнаты в отдельности, потом их складывают. Вот схема последовательности вычислений для одной комнаты:

  1. Вычисляют площадь окна или окон на северной стене.
  2. Вычисляют площадь северной стены. Для этого умножают её наружную высоту на ширину. Ширину определяют до середины смежной стены или до её конца, если она крайняя. Отнимают от этой площади площадь окон, расположенных на стене.

    Для расчета теплопотерь сначала высчитывают величину для каждой комнаты, затем показатели складывают

  3. Вычисляют термическое сопротивление каждого окна.
  4. Вычисляют показания для стены термического сопротивления. Для этого просчитывают показания для каждого слоя конструкции, а потом их складывают.
  5. Подставляют все данные в формулу для вычисления теплопотерь стены. Добавляют из таблицы дополнительных теплопотерь коэффициент для северной стороны.
  6. Также вычисляют теплопотери окон на этой стене.
  7. Вычисляют теплопотери остальных стен по той же схеме. У внутренних стен показания внутренней и внешней температур обычно равны. За внешнюю температуру берутся показания за стеной.
  8. Вычисляют теплопотери потолка. Учитывают, что внутренняя температура на чердаке может отличаться от внешней температуры, поэтому берут для формулы расчёта показатели температуры за перекрытием.

    От правильных расчетов зависит комфорт и уют в доме

  9. По тому же принципу вычисляют теплопотери через пол комнаты.
  10. Складывают все данные и получают расход энергии через ограждения.
  11. Вычисляют объём комнаты, перемножив её высоту, длину и ширину.
  12. Вычисляют расход энергии на обогрев вентиляционного воздуха, подставив данные в формулу.
  13. Складывают энергию, потраченную на ограждения и вентиляцию. Получают конечный результат.
  14. По той же схеме вычисляют все комнаты и помещения здания и находят общую сумму всех показателей. Полученная величина будет наиболее точным мерилом теплопотерь всего дома.

Тепловые потери за счет крыши или потолка

Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.

Выбор и расчет радиаторов

Сразу отметим, что существует не так много видов радиаторов, тем не менее, они есть. И если вы решаете, какие радиаторы выбрать, то мы рекомендуем вам остановить свой выбор именно на секционных устройствах, так как они имеют самые подходящие для потребителя параметры.

Но каким образом произвести расчет необходимого количества секций радиаторов? Все просто – достаточно лишь знать, какой теплоотдачей обладает каждая отдельная секция. Этот показатель измеряется в ваттах. Например, у радиаторов, изготовленных из чугуна, такой показатель составляет примерно 110 ватт, у радиаторов из алюминия – около 200 ватт, у биметаллических приборов – так же, как у алюминиевых, а у стальных – около 85 ватт.

Дабы получить площадь помещения, которая будет обогреваться от одной секции радиатора, необходимо поделить показатель теплоотдачи на сто.

Важно! Все эти параметры актуальны лишь в тех случаях, когда высота потолка в квартире стандартная – порядка 2.7 метра. Как выясняется, каждая секция радиаторов, изготовленных из чугуна, способна обогревать до 1.1 метра квадратного в помещении

Как выясняется, каждая секция радиаторов, изготовленных из чугуна, способна обогревать до 1.1 метра квадратного в помещении.

Далее нам необходимо высчитать общую площадь помещения. Только после этого мы сможем с уверенностью сказать, какое количество секций для него потребуется, но даже после этого остаются некоторые нюансы.

Например, если в комнате имеется дверь на балкон или же она, допустим, угловая, то к полученному количеству секций необходимо будет добавить еще две или даже три. Более того, если радиатор будет закрыт каким-нибудь декоративным элементом, то показатель теплоотдачи уменьшается еще на 15 процентов.

Подобными характеристиками отличается радиатор, установленный в нишу под подоконником, вот только в данном случае уменьшение составляет 10 процентов. Более того, сдерживанием исходящего от батарей тепла занимается даже краска, которой они покрываются. Следовательно, чем больше шаров краски на нем, тем меньшей теплоотдачей он может «похвастаться».

Не стоит забывать и о количестве окон в комнате, а также о материале, из которого они были изготовлены. Это преимущественно относится к пластиковым окнам, у которых, насколько нам известно, наличествуют многокамерные профили. Температура в помещении в таком случае напрямую будет зависеть от количества таких камер – чем их больше, тем теплее.

Более того, сюда следует отнести также толщину стен и материал, при помощи которого они были утеплены, материал, использованный при отделке полового покрытия, термоизляция подвала и кровли, наличие отопления в этих помещениях и так далее. Но, производя расчет отопления в квартире, учесть все указанные аспекты крайне сложно.

Поэтому совет: желательно использовать при расчете более упрощенную формулу. Она заключается в том, что на каждые десять квадратных метров помещения нужен один киловатт тепловой энергии. Но! Это касается только тех квартир, высота потолков в которых не превышает трех метров.

В заключение

Вот и все, наше путешествие в расчет отопления в квартире завершено. Осталось только сделать выводы. Котел, трубы для разводки и радиаторы необходимо выбрать правильно. Только в таком случае отопительная система не будет для вас источником проблем.

Расчет теплопотерь дома — считаем сами правильно!

Расчет отопления частного дома можно сделать самостоятельно, проведя некоторые замеры и подставив свои значения в нужные формулы. Расскажем, как это делается.

Вычисляем теплопотери дома

От расчета теплопотерь дома зависит несколько критических параметров системы отопления и в первую очередь – мощность котла.

Последовательность расчета следующая:

Вычисляем и записываем в столбик площадь окон, дверей, наружных стен, пола, перекрытия каждой комнаты. Напротив каждого значения записываем коэффициент теплопроводности материалов, из которых построен наш дом.

Если вы не нашли нужный материал в приведенной таблице, то посмотрите в расширенной версии таблицы, которая так и называется – коэффициенты теплопроводности материалов (скоро на нашем сайте). Далее, по ниже приведенной формуле вычисляем потери тепла каждого элемента конструкции нашего дома.

ΔT — разница температур внутри и снаружи помещения для самых холодных дней °C

R — значение теплосопротивления конструкции, м2·°C/Вт

λ — коэффициент теплопроводности (см. таблицу по материалам).

Суммируем теплосопротивление всех слоев. Т.е. для стен учитывается и штукатурка и материал стен и наружное утепление (если есть).

Складываем все Q для окон, дверей, наружных стен, пола, перекрытия

К полученной сумме добавляем 10-40% вентиляционных потерь. Их тоже можно вычислить по формуле, но при хороших окнах и умеренном проветривании, смело можно ставить 10%.

Результат делим на общую площадь дома. Именно общую, т.к. косвенно тепло будет тратиться и на коридоры, где радиаторов нет. Вычисленная величина удельных теплопотерь может колебаться в пределах 50-150 Вт/м2. Самые высокие потери тепла у комнат верхних этажей, самые низкие у средних.

После окончания монтажных работ, проведите тепловизионный контроль стен, потолков и других элементов конструкции, чтобы убедиться, что нигде нет утечек тепла.

Приведенная ниже таблица поможет точнее определиться с показателями материалов.

Определяемся с температурным режимом

Этот этап напрямую связан с выбором котла и способом отопления помещений. Если предполагается установка «теплых полов», возможно, лучшее решение – конденсационный котел и низкотемпературный режим 55С на подаче и 45С в «обратке». Такой режим обеспечивает максимальный кпд котла и соответственно, наилучшую экономию газа. В будущем, при желании использовать высокотехнологичные способы обогрева, (тепловой насос, солнечные коллекторы) не придется переделывать систему отопления под новое оборудование, т.к. оно рассчитано именно на низкотемпературные режимы. Дополнительные плюсы – не пересушивается воздух в помещении, интенсивность конвекционных потоков ниже, меньше собирается пыли.

В случае выбора традиционного котла, температурный режим лучше выбрать максимально приближенным к европейским нормам 75С – на выходе из котла, 65С – обратная подача, 20С — температура помещения. Такой режим предусмотрен в настройках почти всех импортных котлов. Кроме выбора котла, температурный режим влияет на расчет мощности радиаторов.

Подбор мощности радиаторов

Для расчета радиаторов отопления частного дома материал изделия не играет роли. Это дело вкуса хозяина дома. Важна только указанная в паспорте изделия мощность радиатора. Часто производители указывают завышенные показатели, поэтому результат вычислений будем округлять в большую сторону. Расчет производится для каждой комнаты отдельно. Несколько упрощая расчеты для помещения с потолками 2,7 м, приведем простую формулу:

Где К — искомое количество секций радиатора

P – мощность, указанная в паспорте изделия

Пример вычисления: Для комнаты площадью 30 м2 и мощности одной секции 180 Вт получаем: K= 30 х 100/180

K=16,67 округленно 17 секций

Тот же расчет можно применить для чугунных батарей, принимая что

1 ребро(60 см) = 1 секция.

Гидравлический расчет системы отопления

Смысл этого расчета – правильно выбрать диаметр труб и характеристики циркуляционного насоса. Из-за сложности расчетных формул, для частного дома проще выбрать параметры труб по таблице.

Здесь приведена суммарная мощность радиаторов, для которых труба подает тепло.

Расчет потерь в тепловых сетях

Здравствуйте, друзья! Расчет тепловых потерь трубопроводами отопления является важным и нужным расчетом, так как позволяет в цифрах определить количество тепла, теряемого в трубах отопления. Также этот расчет важен по той причине, что теплоснабжающие организации включают потери тепла через трубопроводы в оплату теплоэнергии, в том случае если прибор учета тепловой энергии не находится на границе балансовой принадлежности, а от границы раздела до прибора учета тепла есть участки теплотрассы на балансе потребителя тепла.

Вообще, надо сказать, что расчет этот довольно трудоемкий. Ниже приведен пример расчета тепловых потерь трубопроводами отопления. Расчет производится согласно Приказа Министерства энергетики РФ от 30 декабря 2008 г. N 325 «Об утверждении порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя» и методических указаний по составлению энергетической характеристики для систем транспорта тепловой энергии по показателю «тепловые потери» СО 153-34.20.523-2003, Часть 3.

Изоляционный материал: скорлупы минераловатные оштукатуренные,

δ- толщина изоляции = 0,05 м,

α – коэффициент теплоотдачи от изоляции трубопровода к воздуху канала, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

αв – коэффициент теплоотдачи от воздуха к грунту, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

H – глубина заложения до оси трубопроводов, м,

Ø – наружный диаметр трубопровода = 0,076 м,

L – длина трассы = 60 м,

b – ширина канала теплосети = 0,9 м,

h — высота канала теплосети = 0,45 м,

tпср.г. – средняя за отопительный сезон температура теплоносителя в подающем трубопроводе = 65,2 °С,

tоср.г — средняя за отопительный сезон температура теплоносителя в обратном трубопроводе= 48,5 °С,

tгрср.г — среднегодовая температура грунта = 4,5 °С,

λгр – коэффициент теплопроводности грунта = 2,56 Вт/(м °С).

Коэффициент теплопроводности изоляции:

λиз = 0,069+0,00019*((56,85+40)/2) =0,07820075 Вт / (м °С).

Термическое сопротивление теплоотдаче от поверхности изоляции в воздушное пространство:

Rвозд = 1 / (π * α * (Ø + 2δ)) = 1 / (π * 8 * (0,076 + 2 * 0,05)) = 0,2262 (м °С) / Вт.

Эквивалентный диаметр сечения канала в свету:

Øэкв. = 2 * h * b / (h + b) = 2 * 0,45 * 0,9 / (0,45 + 0,9) = 0,6 м.

Термическое сопротивление теплоотдаче от воздуха в канале к грунту:

Rвозд.кан = 1 / (π * αв * Øэкв.) = 1 / (π * 8 * 0,6) = 0,06631456 (м °С) / Вт.

Термическое сопротивление массива грунта:

Rгр = (ln (3,5 * (Н / h) * (h / b) 0,25) / (λгр * (5,7 + 0,5 * b / h)) = (ln (3,5 * (1/ 0,45) * (0,45 / 0,9) 0,25) / (2,56 * (5,7 + 0,5 * 0,9 / 0,45)) = 0,109390664 (м °С) / Вт.

Температура воздуха в канале:

tкан = (tпср.г./( Rиз + Rвозд) + tоср.г/( Rиз + Rвозд) + tгрср.г/( Rвозд.кан + Rгр)) / (1/( Rиз + Rвозд) + 1/( Rиз + Rвозд) + 1/( Rвозд.кан + Rгр)) = (65,2/(1,1397+0,2262) + 48,5/(1,1397 + 0,02262) + 4,5/(0,066 + 0,109)) / (1/(1,1397 + 0,2262) + 1/(1,1397 + 0,2262) + 1/(0,066 + 0,109)) = 15,195 °С.

Среднегодовые часовые удельные тепловые потери qр (Вт / м):

qр = (tкан — tгрср.г) / (Rвозд.кан + Rгр) = (15,195 – 4,5) / (0,066 + 0,109) = 61,1 Вт = 52,55 ккал/час.

Часовые тепловые потери при среднегодовых условиях работы тепловой сети:

Qнорм ср.г. = Σ (qр *L *ß) * 10-6 , Гкал/час,

где ß – коэффициент местных потерь (1,2 для Ø < 150 мм);

Qнорм ср.г. = 52,55 *60 *1,2 * 10-6 = 0,0038 Гкал/час.

Количество дней : (n)

В мае принята 1-я половина – 15 дней.

В сентябре принята 2-я половина – 15 дней

Qиз мес = Qнормср.г. *(( tпср.м + tоср.м — 2* tгрср.м) / (tпср.г + tоср.г – 2* tгрср.г)) * 24 * n.

Qиз сентябрь = 0,0038 * ((65 + 51,9 – 2 * 13,6) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 15 = 1,17 Гкал;

Qиз октябрь = 0,0038 * ((65 + 51,4 – 2 * 8,9) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 2,5 Гкал;

Qиз ноябрь = 0,0038 * ((65 + 50– 2 * 5,1) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 30 = 2,74 Гкал;

Qиз декабрь = 0,0038 * ((79 + 56,2– 2 * 3,0) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 3,5 Гкал;

Qиз январь = 0,0038 * ((75,3 + 54,2– 2 * 1,6) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,4 Гкал;

Qиз февраль = 0,0038 * ((80,2 + 56,9– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 28 = 3,3 Гкал;

Qиз март = 0,0038 * ((65 + 49,6– 2 * 0,5) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,1 Гкал;

Qиз апрель = 0,0038 * ((65 + 51,3– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,0 Гкал;

Qиз май = 0,0038 * ((65 + 52– 2 * 4,1) / (65,2 + 48,5 – 2*4,5)) * 24 * 15 = 1,42 Гкал.

Суммарные потери тепловой энергии через изоляцию

Совсем недавно я выпустил программу для расчета потерь в тепловых сетях, где максимально автоматизировал процесс расчета теплопотерь трубопроводами отопления.

Мою программу расчета теплопотерь в тепловых сетях можно

=======>>> посмотреть здесь .

Программу можно получить и напрямую, написав мне через форму обратной связи на моем сайте. В этом случае предусмотрена скидка.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления

При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу. Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Соотношение площади окон к площади пола

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё. А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7 .

Коэффициент УДтп равен 100 Ватт/м2.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.