Тепловой расчт системы отопления правила расчета тепловой нагрузки

Алан-э-Дейл       28.12.2022 г.

Виды тепловых нагрузок


При расчетах учитывают средние сезонные температуры Тепловые нагрузки носят разный характер. Есть некоторый постоянный уровень теплопотерь, связанный с толщиной стены, конструкцией кровли. Есть временные – при резком снижении температуры, при интенсивной работе вентиляции. Расчет всей тепловой нагрузки учитывает и это.

Сезонные нагрузки

Так называют теплопотери, связанные с погодой. Сюда относят:

  • разницу между температурой наружного воздуха и внутри помещения;
  • скорость и направление ветра;
  • количество солнечного излучения – при высокой инсоляции здания и большом количестве солнечных дней даже зимой дом охлаждается меньше;
  • влажность воздуха.

Сезонную нагрузку отличает переменный годовой график и постоянный суточный. Сезонная тепловая нагрузка – это отопление, вентиляция и кондиционирование. К зимним относят 2 первых вида.

Постоянные тепловые


Промышленное холодильное оборудование выделяет большое количество тепла К круглогодичным относят горячее водоснабжение и технологические аппараты. Последние имеет значение для промышленных предприятий: варочные котлы, промышленные холодильники, пропарочные камеры выделяют гигантское количество тепла.

В жилых зданиях нагрузка на горячее водоснабжение становится сравнима с отопительной нагрузкой. Величина эта мало изменяется в течение года, но сильно колеблется в зависимости от времени суток и дня недели. Летом расход ГСВ уменьшается на 30%, так как температура воды в холодном водопроводе выше на 12 градусов, чем зимой. В холодное время года потребление горячей воды растет, особенно в выходные дни.

Сухое тепло

Комфортный режим определяется температурой воздуха и влажностью. Эти параметры рассчитывают, руководствуясь понятиями сухого и скрытого тепла. Сухое – это величина, измеряемая специальным сухим термометром. На нее воздействует:

  • остекление и дверные проемы;
  • солнце и тепловые нагрузки на зимнее отопление;
  • перегородки между комнатами с разной температурой, полы над пустым пространством, потолки под чердаками;
  • трещины, щели, зазоры в стенах и дверях;
  • воздуховоды вне отапливаемых зон и вентиляция;
  • оборудование;
  • люди.

Полы на бетонном фундаменте, подземные стены при расчетах не учитываются.

Скрытое тепло


Влажность помещения повышает температуру внутри Этот параметр определяет влажность воздуха. Источником выступает:

  • оборудование – нагревает воздух, снижает влажность;
  • люди – источник влажности;
  • потоки воздуха, проводящие сквозь трещины и щели в стенах.

Тепловые счетчики

Согласно закону об энергосбережении установка прибора учета тепловой энергии должна осуществляться в обязательном порядке за счет средств собственника помещения.

Принцип работы теплового счетчика заключается в измерении разницы температур с одновременным определением объема, поступающего в систему теплоносителя. Различают ультразвуковые и тахометрические модели. Ультразвуковые превосходят по всем эксплуатационным параметрам: точнее, надежнее, долговечнее, поэтому и являются более дорогостоящими.

Приобретая счетчик отопления, обратите внимание, сертифицирована ли данная модель для работы в России. После установки устройство обязательно должно быть опломбировано

Поверка прибора производится один раз в четыре года.

Цена самого теплового счетчика невелика. Однако в стоимость необходимо включить:

  • регулирующий вентиль;
  • грязевой фильтр;
  • запорные краны.

Стоимость дополнительных деталей может составить 8000-12000 рублей. Кроме того, в еще большую сумму обойдутся работы по врезке, обвязке и подключению устройства. При этом доверить выполнение работ можно только тем компаниям, которые имеют специальную лицензию на осуществление данной деятельности. Стоимость работ может составить 10000-15000 рублей.

При выборе организации, которая специализируется на установке учетной аппаратуры для отдельной квартиры или дома в целом убедитесь, что кроме монтажа ее специалисты занимаются техническим обслуживанием приборов. В идеале инженеры компании должны:

  • изготовить проект;
  • согласовать его с организацией, предоставляющей услуги по теплоснабжению;
  • провести первичную поверку и зарегистрировать установленное устройство;
  • сдать его в эксплуатацию.

Несомненно, затраты на установку прибора значительны, а формулы по которым ведется расчет достаточно сложны, но все неудобства компенсирует существенная экономия в оплате за теплоснабжение.

Возможные механизмы стимулирования пересмотра договорных тепловых нагрузок потребителей (абонентов)

Пересмотр договорных нагрузок абонентов и понимание истинных значений в потребности теплового потребления является одной из ключевых возможностей для оптимизации имеющихся и проектируемых производственных мощностей, что в перспективе приведёт к:

ü снижению темпов роста тарифов на тепловую энергию для конечного потребителя;

ü снижению размера платы за подключение за счёт переуступки неиспользуемой тепловой нагрузки существующих потребителей, и, как следствие, создания благоприятной среды для развития объектов малого и среднего бизнеса.

Проводимая ПАО «ТГК-1» работа по пересмотру договорных нагрузок абонентов показала отсутствие мотивации со стороны потребителей в снижении договорных нагрузок, в том числе, в проведении сопутствующих мероприятий по энергосбережению и повышению энергоэффективности.

В качестве механизмов стимулирования абонентов к пересмотру тепловой нагрузки, могут быть предложены следующие:

· установление двухставочного тарифа (ставки за тепловую энергию и за мощность);

· введение механизмов оплаты неиспользуемой мощности (нагрузки) потребителем (расширение перечня потребителей, в отношении которых должен действовать порядок резервирования и(или) изменение самого понятия «резервная тепловая мощность (нагрузка)).

При введении двухставочных тарифов возможно решение следующих актуальных для систем теплоснабжения задач :

— оптимизация затрат на содержание тепловой инфраструктуры с выводом из эксплуатации избыточных теплогенерирующих мощностей;

— стимулирование потребителей к выравниванию договорной и фактической присоединённой мощности с высвобождением резервов мощности для подключения новых потребителей;

— выравнивание финансовых потоков ТСО за счёт ставки на «мощность», равномерно распределяемой в течении года, и др.

Следует отметить, что для реализации рассмотренных выше механизмов, требуется доработка действующего законодательства в сфере теплоснабжения.

Формула расчета по общедомовому счетчику в многоквартирном доме

Дальше нужно разобраться, как считается отопление в многоквартирном доме при наличии общего счетчика. Стоит заметить, что общедомовые счетчики тепла в многоквартирном доме позволяют экономить деньги всем жильцам. При условии наличия такого прибора, расчет отопления осуществляется в соответствии с его показаниями

Что важно – в отдельных квартирах уже могут быть установлены индивидуальные приборы учета, но если они есть не в каждой квартире, то расчет все равно проводится по общим показателям.

Формула расчета отопления по общему счетчику имеет следующий вид:

  • Pi = VД x Si/Sоб x TT, где
  • TT – тарифная стоимость тепла, установленная для отдельного региона местным поставщиком,
  • VД – суммарный объем потребляемого зданием тепла, который определяется разницей в показаниях общих счетчиков, установленных на входе и выходе из отопительного контура здания,
  • Si – суммарная площадь отапливаемой квартиры, не оборудованной индивидуальным прибором учета,
  • Sоб – суммарная отапливаемая площадь во всем здании.

Подстановка конкретных значений осуществляется точно так же, как и в предыдущем примере. Когда формула учитывает все необходимые значения, можно рассчитать отопления в многоквартирном доме.

Расход тепла на отопление

1 Расход тепла на отопление.

расход

Максимальный расход тепла на отоплениеопределим по формуле:

где a-поправочныйкоэффициент, учитывающий отклонение расчетной наружной   температуры от среднейрасчетной (-30°С), a = 0,9 ;

    V-объем зданияпо наружному обмеру, м3;

    qот-тепловая отопительная характеристика здания, Вт/м3к;

    -расчетнаявнутренняя температура здания, °С;

    -расчетнаятемпература наружного воздуха для данной местности, для  Кемерово  =-50°С .

Для АБК получим

Аналогичныерасчеты максимального расхода тепла на отопление проводим для всех потребителейи результаты сводим в таблицу 1.

Таблица 1

           Рабочаятаблица расчета тепла на отопление и вентиляцию при tнар= -50°С

Наимено-вание объекта Удельный объемV,тыс м3 Темпер-атура внутри  tвн, °С Удельный рас­ход Вт/м3к Расход теп­ла, МВт
qот qвен отоп-ление венти-ляция
1. 3,3 18 0,37 0,07 0,0747 0,0141
2. Столовая 1,8 16 0,41 0,81 0,0438 0,0866
3. Душевая 1,3 25 0,33 1,16 0,0290 0,102
4. Прачечная 1,8 15 0,44 0,93 0,0463 0,0979
5. Мех. цех 21 20 0,6 0,23 0,794 0,304
6. АТП 34 10 0,58 0,76 1,065 1,395
7. РСУ 19 20 0,6 0,23 0,718 0,275
8. Автобаза 46 10 0,58 0,76 1,441 1,888
4,211 4,163
Средний расход 1,833 1,812

Суммарный максимальный расход наотопление по всем   потребителям – определим,просуммировав максимальные расходы тепла для каждого из потребителей (таблица1).

1.1 Средний расход.

Среднийрасход тепла на отопление определим по формуле:

где ti – средняя температуравнутреннего воздуха отапливаемых                      зданий, ti=24°С ;

tот – средняя температура наружного воздухаза месяц отопительного периода со среднесуточной температурой воздуха от  +8°С и менее, для Кемерово    tот=-8,2°С  ;

to – расчетная температура наружноговоздуха для данной местности,  для Кемерово  tо= -50°С  .

2. Расход тепла на вентиляцию.

2.1 Максимальный расход.

Максимальный расход тепла на вентиляциюопределим по формуле:

где  qв-удельный расход теплоты на вентиляцию, равный расходутеплоты на 1м3  вентилируемого помещения при разности 1°С между расчетной температурой воздуха внутривентилируемого помещения tвр итемпературой наружного воздуха tн, Вт/м3*к .

Для АБК получим

Аналогичныерасчеты максимального расхода тепла на вентиляцию проводим для всехпотребителей и результаты сводим в таблицу 1.

Суммарный максимальный расход навентиляцию –  по всем потребителям определим,просуммировав максимальные расходы тепла для каждого из потребителей (таблица1).

2.2 Средний расход.

Среднийрасход тепла на вентиляцию определим по формуле:

Физический смысл норматива потребления отопления

Многоквартирные дома в законодательстве РФ, в том числе в целях расчета объема потребления теплоэнергии для отопления, рассматриваются как неделимые единицы. То есть МКД — это единый теплотехнический объект, потребляющий теплоэнергию для отопления входящих в его состав помещений. И именно общий объем потребленной всем домом теплоэнергии важен при расчетах исполнителя коммунальных услуг (ИКУ) с ресурсоснабжающей организацией (РСО).

Правила установления и определения нормативов потребления коммунальных услуг, утвержденные ПП РФ от 23.05.2006 N306 (далее — Правила 306) с целью расчета норматива потребления коммунальной услуги по отоплению предусматривают сначала расчет количества тепловой энергии, необходимой для отопления многоквартирного дома или жилого дома в течение года (пункт 19 Приложения 1 к Правилам 306, формула 19). Год выбран в качестве периода, за который производится расчет, для дальнейшего получения усредненного значения норматива потребления теплоэнергии в месяц, поскольку в разные календарные месяцы потребление теплоэнергии на отопление будет, разумеется, разным, а оплата по нормативу предполагает одинаковый размер платы за отопление либо в течение отопительного периода, либо равномерно в течение календарного года, в зависимости от выбранного субъектом РФ способа оплаты отопления .

Поскольку многоквартирный дом состоит из совокупности жилых и нежилых помещений и мест общего пользования (общего имущества), при этом общее имущество на праве общедолевой собственности принадлежит собственникам отдельных помещений дома, весь объем тепловой энергии, поступающей в дом, потребляется именно собственниками помещений такого дома. Следовательно, и оплата теплоэнергии, потребленной на отопление, должна производиться собственниками помещений МКД. И тут возникает вопрос — каким образом распределить стоимость всего объема теплоэнергии, потребленной многоквартирным домом, между собственниками помещений этого МКД?

Руководствуясь вполне логичными выводами о том, что потребление теплоэнергии в каждом конкретном помещении зависит от размера такого помещения, Правительство РФ установило порядок распределения объема теплоэнергии, потребляемой всем домом, среди помещений такого дома пропорционально площади этих помещений. Такой порядок предусматривают как Правила 354 (распределение показаний общедомового прибора учета отопления пропорционально долям площадей помещений конкретных собственников в общей площади всех помещений дома в собственности), так и Правила 306 при установлении норматива потребления отопления.

Пункт 18 Приложения 1 к Правилам 306 устанавливает:«18. Норматив потребления коммунальной услуги по отоплению в жилых и нежилых помещениях (Гкал на 1 кв.м общей площади всех жилых и нежилых помещений в многоквартирном доме или жилого дома в месяц) определяется по следующей формуле (формула 18):

,

где:— количество тепловой энергии, потребляемой за один отопительный период многоквартирными домами, не оборудованными коллективными (общедомовыми) приборами учета тепловой энергии, или жилыми домами, не оборудованными индивидуальными приборами учета тепловой энергии (Гкал), определяемое по формуле 19;— общая площадь всех жилых и нежилых помещений в многоквартирных домах или общая площадь жилых домов (кв.м);— период, равный продолжительности отопительного периода (количество календарных месяцев, в том числе неполных, в отопительном периоде)».

Таким образом, именно приведенной формулой обусловлено, что норматив потребления коммунальной услуги по отоплению измеряется именно в Гкал/кв.метр, что, кроме всего прочего, прямо установлено подпунктом «е» пункта 7 Правил 306:«7. При выборе единицы измерения нормативов потребления коммунальных услуг используются следующие показатели:е) в отношении отопления:в жилых помещениях — Гкал на 1 кв. метр общей площади всех помещений в многоквартирном доме или жилого дома».

Исходя из сказанного, норматив потребления коммунальной услуги по отоплению равен количеству теплоэнергии, потребляемой в многоквартирном доме на 1 квадратный метр площади помещений в собственности в месяц отопительного периода (при выборе способа оплаты равномерно в течение года применяетсякоэффициент периодичности внесения потребителями платы ).

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Удельный расход тепловой энергии на отопление здания

5.12Удельный (на 1 м2отапливаемой площади пола квартир или полезной площади помещений ) расход тепловой энергии на отопление здания, кДж/(м2·°С·сут) или [кДж/(м3·°С·сут)], определяемый по приложению Г, должен быть меньше или равен нормируемому значению, кДж/(м2·°С·сут) или [кДж/(м3·°С·сут)], и определяется путем выбора теплозащитных свойств ограждающих конструкций здания, объемно-планировочных решений, ориентации здания и типа, эффективности и метода регулирования используемой системы отопления до удовлетворения условия

, (6)

где — нормируемый удельный расход тепловой энергии на отопление здания, кДж/(м2·°С·сут) или [кДж/(м3·°С·сут)], определяемый для различных типов жилых и общественных зданий:
а) при подключении их к системам централизованного теплоснабжения по таблице 8 или 9;
б) при устройстве в здании поквартирных и автономных (крышных, встроенных или пристроенных котельных) систем теплоснабжения или стационарного электроотопления — величиной, принимаемой по таблице 8 или 9, умноженной на коэффициент , рассчитываемый по формуле

, (7)

где dec,— расчетные коэффициенты энергетической эффективности поквартирных и автономных систем теплоснабжения или стационарного электроотопления и централизованной системы теплоснабжения соответственно, принимаемые по проектным данным осредненными за отопительный период. Расчет этих коэффициентов приведен в своде правил.

Таблица 8 — Нормируемый удельный расход тепловой энергии на отопление жилых домов одноквартирных отдельно стоящих и блокированных, кДж/(м2·С·сут)

Отапливаемая площадь домов, м2 С числом этажей
1 2 3 4
60 и менее 140
100 125 135
150 110 120 130
250 100 105 110 115
400 90 95 100
600 80 85 90
1000 и более 70 75 80
Примечание — При промежуточных значениях отапливаемой площади дома в интервале 60—1000 м2 значения должны определяться по линейной интерполяции.

5.13 При расчете здания по показателю удельного расхода тепловой энергии в качестве начальных значений теплозащитных свойств ограждающих конструкций следует задавать нормируемые значения сопротивления теплопередачеRreq, м2·°С/Вт, отдельных элементов наружных ограждений согласно таблице 4. Затем проверяют соответствие величиныудельного расхода тепловой энергии на отопление, рассчитываемой по методике приложения Г, нормируемому значению . Если в результате расчета удельный расход тепловой энергии на отопление здания окажется меньше нормируемого значения, то допускается уменьшение сопротивления теплопередачеRreqотдельных элементов ограждающих конструкций здания (светопрозрачных согласно примечанию 4 к таблице 4) по сравнению с нормируемым по таблице 4, но не ниже минимальных величинRmin, определяемых по формуле (8) для стен групп зданий, указанных в поз. 1 и 2 таблицы 4, и по формуле (9) — для остальных ограждающих конструкций:

Rmin = Rreq0,63; (8)

Rmin = Rreq0,8. (9)

Таблица 9 — Нормируемый удельный расход тепловой энергии на отопление зданий , кДж/(м2·С·сут) или [кДж/(м3·С·сут)]

Типы зданий Этажность зданий
1-3 4, 5 6,7 8,9 10,11 12 и выше
1 Жилые, гостиницы, общежития По таблице 8 85

для 4-этажных одноквартирных и блокированных домов — по таблице 8

80 76 72 70
2 Общественные, кроме перечисленных в поз. 3, 4 и 5 таблицы ; ; соответственно нарастанию этажности
3 Поликлиники и лечебные учреждения, дома-интернаты ; ; соответственно нарастанию этажности
4 Дошкольные учреждения
5 Сервисного обслуживания ; ; соответственно нарастанию этажности
6 Административного назначения (офисы) ; ; соответственно нарастанию этажности
Примечание — Для регионов, имеющих значение Dd = 8000 °С·сут и более, нормируемые следует снизить на 5 %.

5.14 Расчетный показатель компактности жилых зданий, как правило, не должен превышать следующих нормируемых значений:

0,25 — для 16-этажных зданий и выше;

0,29 — для зданий от 10 до 15 этажей включительно;

0,32 — для зданий от 6 до 9 этажей включительно;

0,36 — для 5-этажных зданий;

0,43 — для 4-этажных зданий;

0,54 — для 3-этажных зданий;

0,61; 0,54; 0,46 — для двух-, трех- и четырехэтажных блокированных и секционных домов соответственно;

0,9 — для двух- и одноэтажных домов с мансардой;

1,1 — для одноэтажных домов.

5.15 Расчетный показатель компактности зданияследует определять по формуле

, (10)

где — общая площадь внутренних поверхностей наружных ограждающих конструкций, включая покрытие (перекрытие) верхнего этажа и перекрытие пола нижнего отапливаемого помещения, м2;
Vh— отапливаемый объем здания, равный объему, ограниченному внутренними поверхностями наружных ограждений здания, м3.

studfiles.net

Пример перерасчета и уменьшения тепловых нагрузок

Далее мы рассмотрим пример реального уменьшения тепловых нагрузок и затрат на отопления на одном из выполненных нами объектов.

Объект №1 – помещение коммерческого назначения

Помещение коммерческого назначения на первом этаже пяти-этажного здания в Москве.

Основные данные по объекту:

Адрес объекта г. Москва
Этажность здания 5 этажей
Этаж на котором расположены обследуемые помещения 1-й
Площадь обследуемых помещений 112,9 м2
Высота этажа 3,0 м
Система отопления Однотрубная
Температурный график 95-70 оС
Расчетный температурный график для этажа на котором находится помещение 75-70 оС
Тип розлива Верхний
Расчетная температура внутреннего воздуха + 20 оС
Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт. Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопления, мм Ду25
Длина подающего трубопровода системы отопления, м L = 28,0 м.

Горячее водоснабжение и вентиляция на данном объекте отсутствовали.

Договорные тепловые нагрузки составляли 0,02 Гкал/час или 47,67 Гкал/год.

Расчет теплопередачи установленных радиаторов отопления с учетом потерь в трубопроводах и способа установки составил 0,007454 Гкал/час.

Максимальный часовой расход на отопление в трубопроводах составил 0.001501 Гкал/час.

В итоге, максимальный часовой расход на отопление составил 0,008955 Гкал/час или 23 Гкал/год.

Годовая экономия = 47,67 – 23 = 24,67 Гкал/год.

При средней стоимости Гкал 1,7 тысяч рублей, годовая экономия на отоплении для объекта площадью 112 м. кв. составила 42 тысячи рублей.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.