О коммерческом учете тепловой энергии, теплоносителя (с изменениями на 9 сентября 2017 года)

Алан-э-Дейл       12.09.2022 г.

Содержание

Содержание постановления 1034

Постановление 1034, дополненное в 2019 году содержит основные положения учета энергии, в том числе и в многоквартирном доме (и в обычном жилом доме, отопление в котором центральное, а не печное или газовое).

Основные положения 1034-го постановления:

  • требования, которым должны соответствовать счетчики учета тепловой энергии;
  • как правильно устанавливать счетчики;
  • как правильно проверять счетчики теплоэнергии;
  • правила оплаты потребителями в многоквартирном доме;
  • контролирование качества поставляемого тепла;
  • характеристики, которым должны соответствовать тепловая энергия и теплоноситель для осуществления контроля качества;
  • как распределять возможные потери энергоресурсов;
  • определение использованной энергии для учета с коммерческой целью;
  • методическое пособие по учету тепла;
  • иные положения постановления, касаемые в том числе учета теплоэнергии в многоквартирном доме в 2019.

Цели организации коммерческого учета тепловой энергии в 2021 году:

  • организация расчета между поставщиками и потребителями тепловой энергии;
  • контролирование режимов работы теплового оборудования (ведение журнала, в котором будет отмечена каждая мелочь, в том числе и поломки и ремонты);
  • контролирование рационального использования тепла в многоквартирном доме;
  • распределение оплаты за тепло по справедливости (в более утепленном подъезде многоквартирного дома будет теплее, а значит платить меньше, чем те, в которых подъезды «топят улицу»);
  • стимуляция потребителей к экономии;
  • переход ответственности и обслуживания общедомового имущества от ЖКХ к собственникам;
  • организация документооборота относительно учета тепловой энергии и теплоносителя (например, ведение журнала) в 2019 году.

Более подробно с правилами учета тепла можно ознакомиться более тщательно изучив постановление. Или обратившись с вопросом к консультантам.

Подпитка

В алгоритмах учёта тепловой энергии и теплоносителей важное место занимает учёт подпитки. Во-первых, это связано с затратами на химводоподготовку и, во-вторых, с учётом тепловой энергии, привнесённой в сетевую воду с холодной водой

Основная трудность в учёте подпитки заключается в том, что на многих источниках подача подпитки осуществляется не индивидуально в магистраль, а в коллектор обратной сетевой воды. Это делает невозможным измерение расхода подпитки, поступающей в каждую магистраль в отдельности.

Если источник отдаёт всю сетевую воду одному потребителю, то измерить и учесть всю подпитку на источнике возможно.

Если же потребителей несколько, то измерить расход подпитки, поступающей к каждому потребителю, не представляется возможным. Его можно определить только расчётным путём.

В отношении влияния подпитки на точность учёта тепловой энергии с сетевой воды, то, на наш взгляд, в конкретной ситуации необходимо прежде всего убедиться, имеет ли экономический смысл учитывать тепловую энергию, привнесённую в сетевую воду с холодной водой. Расчёты показывают, что в зимний период, когда источником воды являются естественные водоёмы, тепловая энергия, привнесённая в сетевую воду с холодной водой, составляет доли процента от тепловой энергии, произведённой источником.

В летний же период, когда источник отдаёт отдельным потребителям сетевую воду по открытой схеме без возврата с температурой 70°С, а температура источника холодной воды может достигать 25 °С, то учёт тепла, привнесённого в сетевую воду с холодной водой, становится обязательным.

Другое отношение к учёту массы теплоносителя, оставшегося у потребителя из-за утечек или из-за использования теплоносителя на технологические цели. Стоимость химподготовки воды и её закачки в систему существенно больше, чем стоимость тепловой энергии, привнесённой с холодной водой. И с этой точки зрения в точном учёте массы подпитки заинтересованы и источник тепловой энергии, и потребитель. А реализовать это не всегда представляется возможным.

С одной стороны, потребитель на основании «Правил» имеет право определять массу оставшегося у него теплоносителя как разницу между массой полученного и возвращённого теплоносителя. С другой стороны, при разности (Gпрямой — Gобратной ) до 15% от Gпрямой обеспечить требования «Правил» по точности измерений массы при имеющихся в России расходомерах практически невозможно. Если даже применяются прекрасные расходомеры с относительной погрешностью 1%, то относительная погрешность определения массы утечек будет составлять от 8 до 12% в зависимости от методики расчёта.

Сложность этой ситуации заключается в том, что на источнике при коллекторной схеме подпитки без больших материальных затрат невозможно организовать измерение расхода подпитки в каждую магистраль или на группу магистралей, относящихся к одному потребителю. А у потребителя реализовать измерение массы оставшегося теплоносителя с заданной в «Правилах» точностью тоже не всегда возможно. По-видимому, на ближайшие годы «приборное» решение этой задачи будет оставаться сложным, поэтому необходимо узаконить договорные решения.

Как правильно установить тепловой узел?

Установка схемы оборудования учета теплоэнергии в многоквартирном доме, подразумевает соблюдение следующих принципиальных требований при его монтаже:

  • установку схемы оборудования учета тепловой энергии необходимо производить только у границ раздела балансовой принадлежности трубопровода в местах, которые наиболее приближены к основным задвижкам источника тепла;
  • воспрещение отбора теплоносителя из системы коммунального теплоснабжения для личных нужд;
  • регулировка среднесуточных и среднечасовых характеристик теплоносителя делается исходя из показаний приборов учета;
  • приборы учета должны устанавливаться на обратных магистральных трубопроводах и располагаться до места присоединения подпиточного трубопровода.

Прибор учета тепловой энергии должен монтироваться на вводе теплосетей в помещение ИТП. До места расположения расходомеров (на подаче и на обратке) узла учета и после должны быть установлены по два контрольных расходомера (либо хотя бы штуцеры под манометры). После входного манометра необходимо расположить специальное устройство – расходомер. Его задачей является учет объема теплоносителя проходящего через данную трубу.

После расходомера монтируется датчик температуры. Как правило, подобный прибор не оборудуется специальным контрольным табло либо стрелкой которая бы указывала температуру, поэтому следом за ним монтируется еще один, контрольный термометр, который позволяет проверить температуру визуально.

Расположение теплового узла в многоквартирном доме находится в подвале, откуда тепло подается в квартиры. Подключается он в данном случае по элеваторной схеме. Она достаточно проста и дешева. Главным минусом такой системы является то, что невозможно выполнять регулировку в трубах. Из-за чего некоторые конечные потребители могут испытывать  некоторые неудобства. Во время оттепелей за отопительный сезон теплоэнергия перерасходуется.

Основным элементом данной схемы является элеватор. Для того чтобы снизить давление перед ним может быть установлен редуктор. Сам же элеватор необходим для подмеса остывшего теплоносителя к горячему. Основой его работы является разряжение, создаваемое на выходе. Благодаря ему, в элеваторе теплоноситель находится под более низким давлением, из-за чего и происходит смешивание.

Но существует еще одна схема монтажа системы. Ее принцип работы основывается на теплообменнике. Из-за того что тепловой пункт подключается через данный теплообменник, теплоноситель в доме и в теплотрассе разделяется. Благодаря чему появляется возможность выполнять его подготовку. Для этого применяются фильтрация и присадки.

Благодаря данной схеме появляется возможность регулировки температуры и давления теплоносителя в трубах

Чем это так важно? Подобная схема дает возможность уменьшить траты на отопление

Если рассматривать подмес теплоносителя, то данный образец показывает, что он осуществляется при помощи термостатических клапанов. Одним из положительных моментов является возможность использования термостатических клапанов, является возможность использования потребителями алюминиевых батарей. Но существует небольшая неприятность – в случае использования теплоносителя низкого качества, срок службы батарей уменьшается. Естественно, такая возможность как контроль качества теплоносителя, отсутствует.

Важно! После подключения ГВС через теплообменник, можно осуществлять контроль давления и температуры теплоносителя

Из каких устройств состоит блок учета энергоресурсов?

Исходя из особенностей теплопотребления конкретного объекта, количество узлов учёта бывает больше или меньше. Все узлы соединяются при помощи кабельных трасс, которые ведут от приборов к вычислителю. Вычислитель, как правило, располагается в приборном шкафу, с его помощью осуществляется расчет количества потребляемой тепловой энергии, при пересчете показаний приборов.

Его также иногда укомплектовывают GPRS-передатчиком, который при помощи сети сотовой связи осуществляет при запросе (или по расписанию) передачу показаний всех подключенных приборов, поставщику воды, а в случае наличия необходимой настройки передатчикам, потребителю. Как правило, эти показания сверяются раз в день. Данный тип передачи данных называется диспетчеризация. Потребитель также может проверить показания в любой момент, просто открыв шкаф и просмотрев данные отображаемые на электронном табло вычислителя.

Узел учета тепловой энергии – представляет собой не один прибор, а комплекс устройств. Установка уутэ необходима для учета и регулирования энергии и настройки количества теплоносителя внутри. Системы служат для того чтобы регистрировать и контролировать параметры. Монтаж данного оборудования делается в подвале многоэтажек на трубах отопления.

Основные части оборудования:

  1. Запорная арматура.
  2. Датчики мониторинга давления и температуры в системе.
  3. Запорная арматура.
  4. Преобразователи расхода, температуры и давления.
  5. Вычислитель.

Тепловой узел, установка коего изначально проектируется по внедрению в коммунальные системы многоквартирных домов, создается при помощи целого комплекса различных приборов и оборудования. Подобное устройство может служить как одну, так и несколько функций, которыми являются:

  1. Измерение количества тепловой энергии, ее давления, массы, объема и температуры жидкости, которая проходит по трубопроводу во время работы.
  2. Сбор и архивирование данных на локальном носителе.
  3. Вывод информации на приборы учета.

Основываясь на предоставляемых данных, происходит проверка функционирования работы отопительного оборудования в многоквартирных домах, его регулировка и сервис.

Прибором учета выступает такое устройство, как счетчик, в схему которого входит:

  1. Первичного преобразователя расхода.
  2. Тепловычислителя.
  3. Термопреобразователя сопротивлений.

Исходя из того какой тип первичного преобразователя имела место(электромагнитного, тахометрического, ультразвукового или вихревого варианта измерения), теплосчетчик может включать в свое устройство фильтры и датчики давления.

Как устроен тепловой узел?

Вообще, техническое устройство каждого теплового пункта проектируется отдельно в зависимости от конкретных требований заказчика.

Существует несколько основных схем исполнения тепловых пунктов. Давайте рассмотрим их по очереди.

Тепловой узел элеваторного типа

Схема теплового пункта на основе элеваторного узла является наиболее простой и дешевой.

Главный ее недостаток — невозможность регулировать температуру теплоносителя в трубах.

Это вызывает неудобства у конечного потребителя и большой перерасход тепловой энергии в случае оттепелей во время отопительного сезона.

Давайте посмотрим ниже на рисунок и разберемся в том, как работает эта схема:

Тепловой узел схема элеватор

Кроме того, что указано выше, в составе теплового узла может быть редуктор понижения давления. Он устанавливается на подаче перед элеватором.

Элеватор является главной деталью этой схемы, в которой осуществляется подмешивание остывшего теплоносителя из «обратки» к горячему теплоносителю из «подачи».

Принцип работы элеватора основан на создании разряжения на его выходе.

В результате этого разряжения, давление теплоносителя в элеваторе оказывается меньше, чем давление теплоносителя в «обратке» и происходит смешение.

Тепловой узел с теплообменником

Тепловой пункт, подключенный через специальный теплообменник позволяет разделять теплоноситель из теплотрассы от теплоносителя внутри дома.

Разделение теплоносителей позволяет производить его подготовку при помощи специальных присадок и фильтрации.

При такой схеме появляются широкие возможности в регулировании давления и температуры теплоносителя внутри дома. Это позволяет снизить затраты на отопление.

Для того, чтобы иметь наглядное представление о такой конструкции посмотрите ниже на рисунок.

Схема теплового узла с теплообменником

Подмешивание теплоносителя в таких системах делается при помощи термостатических клапанов.

В таких системах отопления в принципе можно применять алюминиевые радиаторы отопления, но долго они прослужат только при хорошем качестве теплоносителя.

Если PH теплоносителя будет выходить за рамки одобренные производителем, то срок службы алюминиевых радиаторов может сильно сократиться.

Качество теплоносителя вы контролировать не можете, поэтому лучше перестраховаться и установить биметаллические или чугунные радиаторы.

ГВС может быть подключена подобным образом через теплообменник.

Это дает такие же преимущества по части регулирования температуры и давления горячей воды.

Стоит сказать, что недобросовестные управляющие компании могут обманывать потребителей при помощи занижения температуры горячей воды на пару градусов.

Для потребителя это почти не заметно, но в масштабах дома позволяет экономить десятки тысяч рублей в месяц.

Обзор документа

Скорректированы Правила коммерческого учета тепловой энергии, теплоносителя. Поправки касаются теплопотребляющих установок с максимальной нагрузкой менее 0,2 Гкал в час.

Если такие установки подключаются к закрытым водяным системам теплоснабжения по независимой схеме, то узел учета теперь можно не оборудовать расходомером теплоносителя в обратном трубопроводе. Условие — расходомер (водосчетчик) должен быть на подпиточном трубопроводе.

В составе технической документации на теплосчетчик изготовитель может представить проектную документацию на узел учета тепловой энергии, теплоносителя, разработанную на основе типового проектного решения. В таких случаях для вышеуказанных установок разрабатывать и согласовывать проект узла не нужно.

Для просмотра актуального текста документа и получения полной информации о вступлении в силу, изменениях и порядке применения документа, воспользуйтесь поиском в Интернет-версии системы ГАРАНТ:

Использование модулей на перемычке

При работе с приборами на смежных сетях и перемычке потребитель регулярно подает поставщику отчет об использовании энергии. Способ передачи (электронный, на бумаге или посредством автоматического считывания) указывается в договоре. Пользователь требует, а поставщик обязан дать расчет объема потребленного тепла или носителя за отчетное время (через 15 рабочих дней после предоставления отчета).

Если владельцем узла выступает снабженец теплом, то пользователь может требовать распечатки показаний, снятых с прибора и характеризующих использование продукта за последний период. В случае сомнений любая сторона инициирует ревизию с привлечением комиссии, о чем составляется акт проверки. Если показания признаны правильными, то материальные траты несет сомневающаяся сторона. В случае неправильной работы счетчика ответственность перекладывается на владельца прибора.

Потребитель должен регулярно подавать поставщику отчет об использовании энергии

В последнем случае для установления размера оплаты применяется расчетный способ. Для этого используют данные, считаные в архиве модуля, а если такие отсутствуют, то берут последние показания. Собственник учетных приборов обязан обеспечить в эксплуатационный период:

  • доступ к измерительным модулям второй стороне соглашения;
  • сохранность установленных средств регистрации;
  • целостность пломб на приборах и всех датчиках, входящих в комплект.

Учетные приборы

Для ведения учета теплоносителя потребуются следующие данные:

  1. Температура в магистрали при входе и выходе узла учета тепловой энергии.
  2. Потребление рабочего вещества, проходящего через аппарат фиксирования.

Последний показатель обозначается измерительными устройствами. Счетчики регистрации ресурса бывают двух категорий.

Крыльчатые

Используются для учета не только тепловой энергии, но и горячего и холодного водоснабжения. Последние устройства отличаются материалом, не предназначенным для агрессивных температур.

Принцип работы крыльчатых теплосчетчиков:

  • крыльчатка вращается вокруг своей оси, движимая потоком воды;
  • действие передается на учетный механизм;
  • поступление осуществляется с помощью ведущего магнита.

Конструкция устройства довольно простая, с низким порогом срабатывания. Оборудованный антимагнитным экраном, агрегат пресекает попытки остановки наружным полем.

Узел учета тепловой энергии

Регистратор перепадов тепловой энергии

Аппарат работает по закону Бернулли. Интеграл показывает зависимость между потоком рабочей жидкости и ее давлением – если показатель увеличивается, то скорость при этом уменьшается. Установив перед регистратором подпорную шайбу, можно получить падение давления с увеличением скорости потока.

Конструкция измерителя предполагает настраиваемое электронное устройство. Подключив прибор через порт к персональному компьютеру, его можно отрегулировать самостоятельно.

Если же отопительная система является открытой, для отбора горячей воды для хозяйственных нужд, датчики напора устанавливаются одновременно на подаче и обрате. Полученная разница определит расход нагретой воды.

Как работает тепловой пункт с элеваторным узлом смешения

Элеваторные узлы смешения устанавливают в тепловых пунктах зданий, которые подключены к тепловой сети работающей в режиме с качественным регулированием на «перегретой» воде.

Качественное регулирование предполагает изменение температуры воды поступающей в систему отопления в зависимости от температуры наружного воздуха, при постоянном расходе воды циркулирующей в ней.

«Перегретой» вода считается, если она поступает из тепловой сети с температурой, превышающей необходимую для подачи в систему отопления.

Например, тепловая сеть может работать по графику 150/70, 130/70 или 110/70, а система отопления рассчитана на график 95/70. Температурный график 150/70 предполагает, что при расчётной температуре наружного воздуха (для Киева это -22°С) температура на вводе тепловых сетей в дом должна быть равной 150°C, а уйти в тепловую сеть должна с температурой 70°C, при этом в дом рассчитанный на график 95/70 эта вода должна попасть с температурой 95°C.

Элеваторный узел смешивает поток воды из подачи тепловой сети с температурой 150°C и поток воды вышедший из системы отопления с температурой 70°C, — в результате смешения на выходе из элеватора получается поток с температурой 95°C, который подаётся в систему отопления.

Как происходит смешение

В камере смешения элеваторного узла расположен конфузор «сопло / конус» разгоняющий поток перегретой воды. При повышении скорости потока давление в нём понижается (это свойство описано законом Бернулли) на столько, что становится несколько ниже давления в обратном трубопроводе. Разница давлений между камерой смешения и обратным трубопроводом приводит к перетеканию теплоносителя через перемычку «сапог элеватора» из обрата в подачу.

В камере смешения образуется смесь двух потоков с уже требуемой температурой, но давлением ниже давления обратного трубопровода. Смесь поступает в диффузор элеватора, в котором скорость потока понижается, а давление повышается над давлением обратного трубопровода. Повышение давления составляет не более 1,5 м.вод.ст, что и накладывает на элеваторные узлы ограничения в применении для систем отопления с высоким гидравлическим сопротивлением.

1 Дешёвый и простой

2 Не требует обслуживания

3 Не зависит от электрической сети

Недостатки элеваторных узлов смешения

1 Не совместим с автоматическими регуляторами, поэтому нормативно запрещена их совместная установка.

2 Создаёт располагаемый напор на вводе в систему отопления не более 1,5м.вод.ст., что исключает установку элеваторных тепловых пунктов в зданиях системы отопления которых оборудованы радиаторными термостатическими клапанами.

3 Элеваторный узел обладает постоянным коэффициентом смешения, что не позволяет подать в систему отопления теплоноситель необходимой температуры, при недогреве в тепловой сети.

4 Слишком высокая чувствительность к располагаемому напору на вводе тепловой сети. Снижение располагаемого напора относительно расчётного значения ведёт к снижению объёмного расхода воды циркулирующего в системе отопления, что в свою очередь приводит к разбалансировке системы и останове дальних стояков/ветвей.

5 Для работы элеватора разница давлений между подающим и обратным трубопроводом должна превышать 15 м.вод.ст.

Где установлены тепловые пункты с элеваторными узлами?

Практически все системы отопления введённые в эксплуатацию до 2000 года оборудованы тепловыми пунктами с элеваторными узлами.

Где можно применять элеваторные ИТП?

В настоящее время для всех проектируемых и реконструируемых жилых и административных зданий, обязательно применение автоматического регулирования в тепловом пункте. Применение же элеваторных узлов совместно с автоматическими регуляторами запрещено нормативно.

Элеваторные узлы могут устанавливаться лишь на объектах где нет необходимости в автоматическом управлении системой отопления, располагаемый напор (разница давлений между подающим и обратным трубопроводом) на вводе стабилен и превышает 15 м.вод.ст, для работы подключённой системы отопления достаточно перепада давлений между подачей и обратом в 1,5м.вод.ст, а система отопления работает с постоянным расходом и не оборудована автоматическими регуляторами.

Ввод в эксплуатацию узла учета. Смежные тепловые сети, перемычки

Ресурсоснабжение ЖКХ > Теплоснабжение > Коммерческий учет тепловой энергии. Постановление 1034

ПРАВИЛА КОММЕРЧЕСКОГО УЧЕТА ТЕПЛОВОЙ ЭНЕРГИИ, ТЕПЛОНОСИТЕЛЯ

Ввод в эксплуатацию узла учета, установленногоу потребителя, на смежных тепловых сетях и на перемычках

61. Смонтированный узел учета, прошедший опытную эксплуатацию, подлежит вводу в эксплуатацию.62. Ввод в эксплуатацию узла учета, установленного у потребителя, осуществляется комиссией в следующем составе:а) представитель теплоснабжающей организации;б) представитель потребителя;в) представитель организации, осуществлявшей монтаж и наладку вводимого в эксплуатацию узла учета.63. Комиссия создается владельцем узла учета.64. Для ввода узла учета в эксплуатацию владелец узла учета представляет комиссии проект узла учета, согласованный с теплоснабжающей организацией, выдавшей технические условия и паспорт узла учета или проект паспорта, который включает в себя:а) схему трубопроводов (начиная от границы балансовой принадлежности) с указанием протяженности и диаметров трубопроводов, запорной арматуры, контрольно-измерительных приборов, грязевиков, спускников и перемычек между трубопроводами;б) свидетельства о поверке приборов и датчиков, подлежащих поверке, с действующими клеймами поверителя;в) базу данных настроечных параметров, вводимую в измерительный блок или тепловычислитель;г) схему пломбирования средств измерений и оборудования, входящего в состав узла учета, исключающую несанкционированные действия, нарушающие достоверность коммерческого учета тепловой энергии, теплоносителя;д) почасовые (суточные) ведомости непрерывной работы узла учета в течение 3 суток (для объектов с горячим водоснабжением — 7 суток).65. Документы для ввода узла учета в эксплуатацию представляются в теплоснабжающую организацию для рассмотрения не менее чем за 10 рабочих дней до предполагаемого дня ввода в эксплуатацию.66. При приемке узла учета в эксплуатацию комиссией проверяется:а) соответствие монтажа составных частей узла учета проектной документации, техническим условиям и настоящим Правилам;б) наличие паспортов, свидетельств о поверке средств измерений, заводских пломб и клейм;в) соответствие характеристик средств измерений характеристикам, указанным в паспортных данных узла учета;г) соответствие диапазонов измерений параметров, допускаемых температурным графиком и гидравлическим режимом работы тепловых сетей, значениям указанных параметров, определяемых договором и условиями подключения к системе теплоснабжения.67. При отсутствии замечаний к узлу учета комиссией подписывается акт ввода в эксплуатацию узла учета, установленного у потребителя.68. Акт ввода в эксплуатацию узла учета служит основанием для ведения коммерческого учета тепловой энергии, теплоносителя по приборам учета, контроля качества тепловой энергии и режимов теплопотребления с использованием получаемой измерительной информации с даты его подписания.69. При подписании акта о вводе в эксплуатацию узла учета узел учета пломбируется.70. Пломбирование узла учета осуществляется:а) представителем теплоснабжающей организации в случае, если узел учета принадлежит потребителю;б) представителем потребителя, у которого установлен узел учета.71. Места и устройства для пломбировки узла учета заранее готовятся монтажной организацией. Пломбировке подлежат места подключения первичных преобразователей, разъемов электрических линий связи, защитных крышек на органах настройки и регулировки приборов, шкафы электропитания приборов и другое оборудование, вмешательство в работу которого может повлечь за собой искажение результатов измерений.72. В случае наличия у членов комиссии замечаний к узлу учета и выявления недостатков, препятствующих нормальному функционированию узла учета, этот узел учета считается непригодным для коммерческого учета тепловой энергии, теплоносителя.В этом случае комиссией составляется акт о выявленных недостатках, в котором приводится полный перечень выявленных недостатков и сроки по их устранению. Указанный акт составляется и подписывается всеми членами комиссии в течение 3 рабочих дней. Повторная приемка узла учета в эксплуатацию осуществляется после полного устранения выявленных нарушений.73. Перед каждым отопительным периодом и после очередной поверки или ремонта приборов учета осуществляется проверка готовности узла учета к эксплуатации, о чем составляется акт периодической проверки узла учета на границе раздела смежных тепловых сетей в порядке, установленном пунктами 62 — 72 настоящих Правил.

_______________________________________

Элеваторный узел системы отопления – принцип работы

На рисунках ниже указаны самые распространенные схемы соединения тепловых сетей и тепловых пунктов.
В статье рассмотрены принципиальные схемы тепловых пунктов ТП , а не монтажные. Датчик тепла устанавливается в подающую трубу, которая находится в подвале, до элеватора.
Сертификаты на используемые электроды и трубопроводы. В составе ИТП, который также управляет системой горячего водоснабжения дома, прежде всего необходим теплообменник, в котором, собственно, происходит подогрев воды из водопровода до необходимой температуры, также регулирующий клапан с электроприводом, которым управляет электронный регулятор температуры или автоматический регулятор температуры прямого действия, а также автоматический регулятор перепада давления и два циркуляционных насоса.
Руководство УК вынуждено полагаться на проектировщиков, однако они обычно аффилированы с конкретным производителем ТП или компанией, производящей монтаж. Не допускается применять чрезмерное усилие в случае ручного управления клапаном, а также при наличии давления в системе нельзя разбирать регуляторы. Реализация на практике индивидуального теплового пункта Первые современные энергоэффективные модульные ИТП в Украине были установлены в Киеве в период — гг. Ведь очень часто расчетное потребление значительно больше фактического по причине того, что при расчете нагрузки поставщики тепловой энергии завышают их значения, ссылаясь на дополнительные расходы.
От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. Наблюдать за отсутствием постороннего шума, а также не допускать повышенной вибрации. При этом необходимо, чтобы температура теплоносителя в системе отопления изменялась в зависимости от изменения температуры наружного воздуха.

Зависимая схема с двухходовым клапаном и насосами в подающем трубопроводе


Подобных ситуаций позволит избежать установка приборов учета. При этом по мере необходимости потребители отбирают из контура воду. Может состоять из одного или нескольких блоков. Проектные документы, где есть все необходимые согласования. Дейнеко Индивидуальный тепловой пункт ИТП — важнейшая составляющая систем теплоснабжения зданий.

Часто тепло из системы ГВС используется потребителями для частичного отопления помещений, например ванных комнат в многоквартирных жилых домах. Охлажденная сетевая вода поступает в систему отопления.

Но любая система имеет и недостатки, коллекторный узел не стал исключением: Для каждого элемента элеватора нужны отдельные расчеты. Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором. Изменение просвета меняет скорость движения воды.
Суть схемы теплоснабжения Москвы

Технические проблемы учета тепловой энергии и теплоносителей

Современные автоматизированные системы учёта тепловой энергии и теплоносителей на ТЭС, РТС и котельных являются, как правило, трёхуровневыми иерархическими системами. Нижним уровнем служат датчики параметров теплоносителей — расхода, давления и температуры.

На втором уровне находятся контроллеры, к которым подключены датчики. Как правило, в качестве контроллеров используются теплосчётчики.

Третьим уровнем иерархии является специализированный вычислитель, к которому подключены контроллеры. В качестве вычислителя используются промышленные или конторские ПЭВМ.

Двойное назначение измерений параметров теплоносителей

Измерения таких параметров теплоносителей, как расход, давление и температура, фактически имеют двойное назначение. С одной стороны, они необходимы для учёта тепловой энергии и теплоносителей. С другой стороны, эти параметры необходимы технологам для контроля и управления технологическими процессами.

Особое внимание при этом уделяется контролю за возможными скачками давления, так как они могут приводить к гидравлическим ударам. В таком контроле очень заинтересованы тепловые сети

Естественно, что современные контроллеры, в принципе, позволяют удовлетворить требования указанных выше двух назначений по быстродействию. Но в реальности сейчас нет таких теплосчётчиков, которые по частоте опроса датчиков и по скорости передачи этих данных для технологического контроля удовлетворяли бы указанным требованиям.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.