Теплопроводность строительных материалов: какой материал самый энергоэффективный

Алан-э-Дейл       22.02.2023 г.

Теплотехнический расчет.

Приступаем непосредственно к теплотехническому расчету, а именно — нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.В первую очередь — определяем норму тепловой защиты из условий соблюдения санитарных норм.Согласно формулы 3 из СНиП 23-02-2003 «Тепловая защита зданий» рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:

где:n = 1 — коэффициент, принятый по таблице 6, из СНиП 23-02-2003 «Тепловая защита зданий» для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);

tint = 20°С — оптимальная температура в помещении, из исходных данных;

text = -30°С — температура наиболее холодной пятидневки, значение из исходных данных;

Δtn = 4°С — данный показатель принимается по таблице 5, из СНиП 23-02-2003 «Тепловая защита зданий» он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);

αint = 8,7 Вт/(м2×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 «Тепловая защита зданий» для наружных стен.

Выполняем расчет:

получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;

Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.

Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий»:

Dd = (tint — tht)zht = (20 + 4,0)*214 = 5136°С×сут

Примечание: градусо-сутки ещё имеют сокращенное обозначение — ГСОП.

Далее, согласно СНиП 23-02-2003 «Тепловая защита зданий» в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:

Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,

где: Dd — градусо-сутки отопительного периода в г. Муром,

a и b — коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 «Тепловая защита зданий» для стен жилого здания.таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;

Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;

Определение толщины утеплителя

Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:

где:δi- толщина слоя, мм;λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

Рассчитываем термическое сопротивление для каждого слоя1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:

где:

Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности,

αext принимается по таблице 14 для наружных стен;

ΣRi = 0,116 + 0,104 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт

Толщина утеплителя равна:

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.

Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором «Теплотехнический расчет стены», где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.

строительство дома

строительные технологии

  • Добавить комментарий
  • 1335 просмотров

описание различных пород, необходимость таблицы коэффициентов теплопроводности

Древесина — экологически чистый и практичный материал. Дерево активно применяется для внутренней отделки помещений. Материал также используется в строительстве загородных домов и заведений для туристов, в которых большую роль играет экологичность здания

При строительстве важно учесть теплопроводность дерева и многие другие параметры. Внутренняя отделка тоже требует внимания к характеристикам, ведь породы по-разному реагируют на тепло и влагу

Разновидности и использование древесины

В строительстве применяются разнообразные породы древесины, которые принято разделять на хвойные и лиственные. К хвойным относятся такие виды:

Сосна. Прочный и практичный материал для выполнения строительных работ. В нем собрано большое количество смолы, за счет чего он справляется с излишней влагой, при этом не поддается коррозии при сушке.
Ель и пихта. Довольно прочные, но сучковатые материалы. Имеют приятый оттенок и незначительное количество смолы

При строительстве применяются как материал для элементов второстепенной важности.
Кедр. Невзирая на то, что материал мягкий, он довольно прочный.

Лиственные породы делятся на мягкие и твердые. Это такие виды:

  1. Дуб. Высококачественный материал, обладающей высокой прочностью и надежностью. У дуба натуральный и приятный для глаза цвет. Как правило, он применяется для изготовления мебели, при возведении лестничного марша. Наиболее роскошно выглядит настоящий мореный дуб (выдержанный в воде около двух лет).
  2. Береза. Не столь прочный материал, зато однородный, за счет чего имеет максимально четко выраженную структуру. Из этого вида древесины получается качественная фанера, которая легко окрашивается и полируется.
  3. Осина. Слишком мягкий, но при этом практически не имеющий сучков вид древесины. Легко поддается обработке, но мелкие детали из осины делать не стоит.
  4. Липа. Широко применяется в производстве мебели. Прекрасно сохраняет свой первозданный вид даже после сушки. Липа устойчива к влаге.
  5. Клен. Довольно практичный материал, но весьма быстро рушится под воздействием влаги и вредителей. Неплохо красится, обрабатывается и проклеивается. Широко применяется как в строительстве, так и в изготовлении мебели.
  6. К лиственному типу также относится красное дерево. Красивый, дорогой и прочный материал. Чаще всего используется для элитного мебельного производства.

Чтобы выбрать подходящую породу, важно изучить таблицу теплопроводности древесины

Достоинства материала

Строительство с использованием древесины имеет свои преимущества и недостатки. Главными плюсами при выборе такого материала будут:

  1. Экологичность. Самый весомый аргумент в пользу древесины — экологическая чистота. Некоторые современные материалы могут выделять пары тяжелых металлов и прочих химических элементов, что пагубно повлияет на здоровье жильцов дома.
  2. Ремонтопригодность. Части, сделанные из древесины, будет довольно легко отремонтировать в случае поломки или износа.
  3. Прочность и устойчивость ко многим внешним факторам, что делает долгим срок службы изделий из древесины. При правильной обработке этот материал будет безотказно служить долгие годы.
  4. Простота обработки.
  5. Плохая теплопроводность.
  6. Хорошие звукоизоляционные свойства.

Довольно обширный список. При этом маленькое число недостатков:

  1. Сильная зависимость свойств материала от того, в каких условиях росло дерево. Выбрать из-за этого качественный экземпляр бывает трудно.
  2. Изменения размеров из-за воздействия влажности и сухости. Но этот недостаток легко поправим обработкой.
  3. Легкая воспламеняемость.

Нельзя не учитывать высокую стоимость, связанную со сложностью добычи высококачественной древесины.

Влияние теплопроводности

От коэффициента теплопроводности древесины напрямую зависит ее способность сохранять температуру в помещении. Лидирующую позицию по сбережению тепла занимает кедр. Немного отстают ель, лиственница и другие сосновые породы. Все зависит напрямую от размера бревна (его диаметра), влажности материала, подгонки и утепления стыков.

Строение из сосны толщиной всего в 10 см можно сравнить со стеной из кирпича шириной в 58 см или железобетонной — 113 см. Правильно возведенный из дерева дом будет довольно компактным и теплым. Поэтому при строительстве нужно учитывать таблицу теплопроводности дерева.

Максимально тяжелое хвойное дерево лиственница — победитель сосны по теплопроводности. Она имеет более низкий коэффициент.

Теплопроводность дерева, позволяющая сохранять тепло, — не единственное достоинство лиственницы. Структура этого материла устойчива к влаге и довольно красива.

3вукопоглощение

3вукопоглощение характеризуется коэффициентом звукопоглощения, который определяет ту часть звуковой энергии, падающей на испытуемый предмет, которая от него не отражается. Определенный по методу стоячих волн коэффициент звукопоглощения имеет следующие величины (табл. 3).

Поглощение звука зависит от высоты тона и для древесины меньше, чем для кирпича. Способность материалов поглощать звук имеет первостепенное значение при устройстве аудиторий, концертных зал, театров и тому подобных помещений.
Табл. 3. —К оэфициент звукопоглощения

Материал Коэф. звукопоглощения при частоте колебании
297 569 1 095 2 890
Кирпич 0,019 0,019 0,019 0,021
Сосна 0,012 0,009 0,016 0,009
Дуб 0,011 0,007 0,011 0,005

Теплопроводность, звукопроводность и электропроводность древесины

Теплопроводностью древесины называется ее способность проводить теплоту через свою толщу от одной поверхности к другой. Теплопроводность сухой древесины незначительна, что объясняется пористостью её строения. Коэффициент теплопроводности древесины равен 0,12—0,39 Вт/ (м • град). Полости, межклеточные и внутриклеточные пространства в сухой древесине заполнены воздухом, который является плохим проводником теплоты. Благодаря низкой теплопроводности древесина получила широкое распространение в строительстве. Плотная древесина проводит теплоту несколько лучше рыхлой. Влажность древесины повышает ее теплопроводность, так как вода по сравнению с воздухом является лучшим проводником теплоты. Кроме того, теплопроводность древесины зависит от направления ее волокон и породы. Например, теплопроводность древесины вдоль волокон примерно вдвое больше, чем поперек.

Звукопроводностью называется свойство материала проводить звук; она характеризуется скоростью распространения звука в материале. В древесине быстрее всего звук распространяется вдоль волокон, медлен­нее — в радиальном и очень медленно — в тангенциальном направлениях. Звукопро­водность древесины в продольном направ­лении в 16 раз, а в поперечном в 3—4 раза больше звукопроводности воздуха. Это отри­цательное свойство древесины требует при устройстве деревянных перегородок, полов и потолков применения звукоизолирующих материалов. Звукопроводность древесины и ее способность резонировать (усиливать звук без искажения тона) широко исполь­зуются при изготовлении музыкальных ин­струментов. Повышенная влажность древе­сины понижает ее звукопроводность. Наилучшей древесиной для изготовления музыкальных инструментов является дре­весина ели, пихты кавказской и сибир­ского кедра.

Электропроводность древесины характе­ризуется ее сопротивлением прохождению электрического тока. Электропроводность древесины зависит от породы, температуры, направления волокон и ее влажности. Элект­ропроводность сухой древесины незначи­тельна. Это позволяет применять ее в ка­честве изоляционного материала. При уве­личении влажности в диапазоне от 0 до 30% электрическое сопротивление падает в миллионы раз, а при увеличении влажности свыше 30% — в десятки раз. Электриче­ское сопротивление древесины вдоль воло­кон меньше в несколько раз, чем поперек волокон. Повышение температуры древеси­ны приводит к уменьшению ее сопротив­ления примерно в 2 раза.

Теплопроводность древесины.

Теплопроводность определяет способность древесины проводить тепло и характеризуется коэффициентом теплопроводности λ, который представляет собой количество тепла, проходящего в течение 1 ч через плоскую стенку площадью 1 м2 и толщиной 1 м при разности температур на противоположноных сторонах стенки 1° С. Размерность теплопроводности ккал/м ч х град) или, в системе СИ, вт/м. х град. Вследствие пористого строения древесины теплопроводность невысока. С увеличением плотности теплопроводность древесины возрастает. Так как теплопроводность воды при одинаковой температуре в 23 раза меньше теплопроводности воздуха, теплопроводность древесины в сильной мере зависит от влажности, увеличиваясь, с ее возрастанием. С увеличением температуры теплопроводность древесины возрастает, причем это увеличение в большей мере выражено у влажной древесины. Теплопроводность древесины вдоль волокон значительно больше, чем поперек волокон.

В плоскости поперек волокон теплопроводность также зависит от направления, причем соотношение между теплопроводностью в радиальном λR и тангенциальном λт направлениях у разных пород различное. На величину этого соотношения оказывают влияние объем сердцевинных лучей и содержание поздней древесины. У пород с многочисленными сердцевинными лучами (дуб) λr>λг; у хвойных пород с небольшим объемом сердцевинных лучей, но имеющих высокий процент поздней древесины (лиственница), λт >λr. У лиственных пород с равномерным строением годичных слоев и сравнительно малочисленными короткими сердцевинными лучами, а также у остальных хвойных пород λr мало отличается от λт. Диаграмма (рис. 43) позволяет определить величину теплопроводности древесины сосны (русл =360 кГ/м3) в тангенциальном направлении при различной температуре и влажности. Данные, полученные по этой диаграмме, могут быть использованы после внесения соответствующих поправок для определения с достаточной для практических расчетов точностью теплопроводности древесины других пород при разных значениях плотности в трех главных направлениях теплового потока. Необходимое значение коэффициента теплопроводности можно установить по формуле:

где λном —номинальное значение коэффициента теплопроводности при заданной температуре и влажности (определяется по диаграмме рис. 43). Кр — коэффициент, учитывающий условную плотность древесины; Кх — коэффициент, учитывающий направление теплового потока. Значения коэффициентов, входящих в эту формулу, определены для древесины сосны, березы и дуба.

Рис. 43. Диаграмма для определения теплопроводности древесины в тангенциальном направлении (сосна, Русл = 360 кг/м3).

Таблица 20. Значения коэффициента Кр, учитывающего изменение теплопроводности древесины от плотности.

Условная плотность, кг 1м3 Кр Условная плотность, кг 1м3 Кр
340 0,98 500 1,22
360 1,00 550 1,36
380 1,02 600 1,56
400 1,05 650 1,86
450 1,12

В табл. 20 приведены значения коэффициента, учитывающего условную плотность древесины. Коэффициент Кх в тангенциальном направлении поперек волокон для всех пород принят равным 1,0, а в радиальном — 1,15; вдоль волокон для хвойных и рассеяннососудистых пород — 2,20, а для кольцесосудистых — 1,60.

Пример. Определить теплопроводность березы вдоль волокон при температуре 50°С и влажности 70%. По диаграмме рис. 43 находим, что номинальное значение теплопроводности при указанном состоянии древесины равно 0,22 ккал/м х ч х град. По табл. 19 определяем условную плотность березы русл = 500 кг/м3. По табл. 20 находим величину коэффициента КР = 1,22. Значение коэффициента Кх в данном случае равно 2,20. Подставляем найденные значения с формулу и получаем величину теплопроводности березы вдоль волокон при заданных условиях:

www.drevesinas.ru

Плотность древесины

Что такое плотность древесины

Плотность древесины — это отношение массы древесины к объёму древесины, то есть плотность определяется массой древесного вещества в единице своего объёма. Выражается плотность в кг/м³.

Плотность древесины зависит от её влажности. Как и все остальные показатели физико-механических свойств древесины, она определяется при влажности 12 %. Между прочностью и плотностью существует тесная связь. Более тяжелая древесина, как правило, является более прочной. При определении плотности древесинного вещества его массу определяют взвешиванием, а объем рассчитывают по разнице объема образца древесины и объема жидкости, заполнившей пустоты в этом образце.

По плотности древесины при влажности 12 % все породы делят на три группы:

  • с малой плотностью (540 кг/м³ и меньше-) — бальза, ель, пихта, сосна, кедр, можжевельник, тополь, осина, ива, липа, ольха, каштан;
  • средней плотности (540. 740 кг/м³) — лиственница, берёза, бук, дуб, клён, ясень, орех грецкий, рябина, яблоня, груша, вяз (карагач), лещина;
  • высокой плотности (750 кг/м³ и более+) — акация, граб, береза железная, дуб, ясень, самшит, фисташка.

Необходимо отметить, что почти вся древесина у хвойных пород деревьев, за исключением лиственницы и некоторых видов сосны, имеет низкую плотность.

Звуконроницаемость

Звуконроницаемостью называется способность материала пропускать звук; эта способность характеризуется коэффициентом звукопроницаемости, т. е. отношением количества звуковой энергии, прошедшей через данный предмет (стену, перегородку), к количеству энергии, падающей на него.

Если звукопроницаемость открытого окна принять за единицу, то для стеклянной пластины коэф. звукопроницаемости будет равен 0,37, а для сосновой панели — 0,19. Звукопроницаемость материалов имеет огромное значение в жилищном строительстве, где для звукоизоляции помещений принимают специальные меры. Звук может передаваться из помещения в помещение по воздуху (громкий разговор, игра на музыкальных инструментах и пр.) или путем материального переноса (стук, ходьба и пр.).

В первом случае хорошим изолятором будет материал большой плотности, по которому хорошо распространяется звук; зато во втором случае такие материалы совершенно непригодны. Здесь необходимо употреблять материал малой плотности, с малой скоростью распространения в нем звука. Звукоизоляционная способность материалов поэтому может быть характеризована произведением скорости распространения звука в данном материале на его объемный вес. Это произведение, иногда называемое звуковым сопротивлением, для различных материалов неодинаково (табл. 4).

Табл. 4. 3вукоизоляционная способность различных материалов.

Материал Объемный вес Скорость распростр. звука в м Звуковое сопротивление
Воздух 0,0013 340 0,44
Стекло 2,5 5 000 12 500
Дуб 0,7 3 380 2 336
Ель 0,5 5 250 2 625
Пробка 0,2 500 100

Тепловое расширение, теплопроводность древесины

Теплопроводность древесины

, как и других материалов, оценивается коэффициентом теплопроводности, выражающим количество тепла в калориях, проходящее в течение 1 часа через пластину площадью 1 м2, толщиной 1 м при разности температур с обеих сторон пластин в 1° (табл. 14).

Таблица 14 Теплопроводность различных древесных материалов (в воздушносухом состоянии)

Порода дерева или древесный материал Коэфициент теплопроводности Ккал/м2 час °C м
поперек волокон вдоль волокон
Балинит 0,15 0,20
Дельта-древесина 0,13 0,17
Дуб 0,20 0,35
Ель 0,13 0,31
Клен 0,15 0,37
Сосна 0,13 0,31
Уплотненная древесина 0,32

Древесина обладает слабой теплопроводностью, особенно в сухом состоянии. С повышением объемного веса и влажности теплопроводность повышается. Так, например, при увеличении влажности древесины с 5 до 15% коэффициент теплопроводности увеличивается на . 10%.

В направлении волокон теплопроводность древесины обычно больше, чем в· направлении поперек волокон.

Тепловое расширение.

Тепловое расширение

древесины характеризуется коэффициентом линейного расширения. Коэффициент линейного расширения у древесины в различных направлениях различен (см. табл. 15), наименьшее его значение вдоль волокон. (11 · 10-7 —65 · 10-7 ), наибольшее – тангентальном направлении (27 · 10-6—61*10-6). Вдоль волокон коэффициент линейного расширения древесины значительно меньше, а поперек волокон значительно больше, чем у железа и меди.

Таблица 15 Коэффициенты линейного расширения древесины

Порода дерева Вдоль волокон Поперек волокон В радиальном направлении В тангентальном направлении
Береза желтая 0,0000025 0,0000272 0,000030
Граб 0,000006
Дуб 0,0000036 0,0000293 0,0000419
Ель 0,0000054 0,0000341
Каштан 0,0000065 0,0000325
Красное дерево 0,0000036 0,0000405
Липа 0,0000054 0,0000444
Пихта 0,0000037 0,0000584
Сосна 0,0000051 0,0000514
Тюльпанное дерево 0,0000017 0,0000242 0,0000267
Ясень 0,0000011

Изменением размеров древесины от нагревания практически можно пренебречь, так как ввиду незначительности коэффициента линейного расширения оно намного меньше изменений ее размеров от усушки или разбухания.

Теплоемкость древесины (удельная теплота) представляет собой отношение количества тепла, необходимого для поднятия температуры единицы веса древесины на 1°, к количеству тепла, потребному для поднятия температуры такой же единицы воды на 1°.

Теплоемкость древесины в абсолютно сухом состоянии почти не зависит от породы дерева и в пределах от 0 до 106° равняется 0,327. Теплоемкость несухой древесины слагается из теплоемкости абсолютно сухой древесины и теплоемкости находящейся в ней воды.

С повышением температуры и влажности теплоемкость древесины увеличивается. Для определения теплоемкости древесины при любой ее влажности и температуре можно пользоваться следующей формулой:

Cw = 26,6+0,116t+w/(100+w) Ккал/кг °С

где Cw — теплоемкость древесины при заданной влажности, W— влажность древесины, t — температура ее.

ремонт мягкой мебели

Таблица теплопроводности материалов и утеплителей

Теплопроводность основное свойство теплоизоляции. Это качество материала передавать тепло. Обозначается коэффициент теплопроводности символом «лямбда». Если данный коэффициент имеет низкое значение, эффективность утеплителя возрастает.

Для поддержания в помещении комфортного климата, показатели теплопроводности рассчитаны для каждого региона.

Теплопроводность утеплителей таблица

Наименование материала Коэффициент теплопроводности Вт/(м·°C)    
В сухом состоянии При нормальной влажности При повышенной влажности
Каменная минеральная вата 25-50 кг/м3 0.036 0.042 0.045
Каменная минеральная вата 40-60 кг/м3 0.035 0.041 0.044
Каменная минеральная вата 80-125 кг/м3 0.036 0.042 0.045
Каменная минеральная вата 140-175 кг/м3 0.037 0.043 0.0456
Каменная минеральная вата 180 кг/м3 0.038 0.045 0.048
Стекловата 15 кг/м3 0.046 0.049 0.055
Стекловата 17 кг/м3 0.044 0.047 0.053
Стекловата 20 кг/м3 0.04 0.043 0.048
Стекловата 30 кг/м3 0.04 0.042 0.046
Стекловата 35 кг/м3 0.039 0.041 0.046
Стекловата 45 кг/м3 0.039 0.041 0.045
Стекловата 60 кг/м3 0.038 0.04 0.045
Стекловата 75 кг/м3 0.04 0.042 0.047
Стекловата 85 кг/м3 0.044 0.046 0.05
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0.029 0.03 0.031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0.14 0.22 0.26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0.11 0.14 0.15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0.15 0.28 0.34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0.13 0.22 0.28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0.073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0.029 0.031 0.05
Пенополиуретан (ППУ) 60 кг/м3 0.035 0.036 0.041
Пенополиуретан (ППУ) 80 кг/м3 0.041 0.042 0.04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0.026
Ксенон 0.0057
Аргон 0.0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0.05
Вермикулит 0,064-0,074
Вспененный каучук 0.033
Пробка листы 220 кг/м3 0.035
Пробка листы 260 кг/м3 0.05
Базальтовые маты, холсты 0,03-0,04
Пакля 0.05
Перлит, 200 кг/м3 0.05
Перлит вспученный, 100 кг/м3 0.06
Плиты льняные изоляционные, 250 кг/м3 0.054
Полистирол бетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0.038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0.078
Пробка техническая, 50 кг/м3 0.037

В таблице приведены показатели нормативных документов.

Так как материалы разных производителей отличаются по характеристикам, необходимо обращать на это внимание при покупке. Сравнение теплопроводности строительных материалов по толщине

Сравнение теплопроводности строительных материалов по толщине

Таблица теплопроводности материалов на Р

Материал Плотность,кг/м3 Теплопроводность,Вт/(м·град) Теплоемкость,Дж/(кг·град)
Ракушечник 1000…1800 0.27…0.63
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9

Выбор сечения клееного бруса

Выбор ширины сечения клееного бруса зависит от особенностей его использования, прежде всего – от назначения строительного объекта и региона страны, в котором планируется его возведение.

Толщина клееного бруса, мм Предпочтительное использование Регионы
240 Дома для круглогодичного проживания Наиболее морозные и ветреные широты
200, 212 Дома для круглогодичного проживания. В большинстве случаев – оптимальный выбор по сочетанию цены и расходов на отопление. Любые
160, 168 Дома для сезонного проживания и временного пребывания зимой. Гостевые, дачные домики, бани. Любые. Области с теплым климатом
125 Летние домики, барбекю, веранды, беседки, бани, строения, в которых не планируется проживание в зимнюю пору, межкомнатные перегородки Дома для круглогодичного проживания Любые. Регионы с мягким климатом
85 Беседки, хозяйственные постройки, лестницы, оконные конструкции и пр. Любые

Независимо от того, брус какой толщины вы выберете, стоит учесть, что тепловые потери через стены дома не превышают 33%. Остальное теряемое тепло уходит через оконные и дверные проемы (27%), подвальные и чердачные перекрытия (21%) и вентиляционную систему (19%). Поэтому толщина бруса играет не самую важную роль для обеспечения общей энергетической эффективности дома.

Таблица теплопроводности материалов на Пли-

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)
50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Гость форума
От: admin

Эта тема закрыта для публикации ответов.