Коэффициент теплопроводности строительных материалов

Алан-э-Дейл       20.11.2022 г.

Содержание

Таблица теплопроводности материалов на Ке…-Ки…

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58

Приложение А (обязательное)

Таблица А.1

Материалы (конструкции)

Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации

А

Б

1 Пенополистирол

2

10

2 Пенополистирол экструзионный

2

3

3 Пенополиуретан

2

5

4 Плиты из резольно-фенолформальдегидного пенопласта

5

20

5 Перлитопластбетон

2

3

6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс»

5

15

7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс»

8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна)

2

5

9 Пеностекло или газостекло

1

2

10 Плиты древесно-волокнистые и древесно-стружечные

10

12

11 Плиты фибролитовые и арболит на портландцементе

10

15

12 Плиты камышитовые

10

15

13 Плиты торфяные теплоизоляционные

15

20

14 Пакля

7

12

15 Плиты на основе гипса

4

6

16 Листы гипсовые обшивочные (сухая штукатурка)

4

6

17 Изделия из вспученного перлита на битумном связующем

1

2

18 Гравий керамзитовый

2

3

19 Гравий шунгизитовый

2

4

20 Щебень из доменного шлака

2

3

21 Щебень шлакопемзовый и аглопоритовый

2

3

22 Щебень и песок из вспученного перлита

5

10

23 Вермикулит вспученный

1

3

24 Песок для строительных работ

1

2

25 Цементно-шлаковый раствор

2

4

26 Цементно-перлитовый раствор

7

12

27 Гипсоперлитовый раствор

10

15

28 Поризованный гипсоперлитовый раствор

6

10

29 Туфобетон

7

10

30 Пемзобетон

4

6

31 Бетон на вулканическом шлаке

7

10

32 Керамзитобетон на керамзитовом песке и керамзитопенобетон

5

10

33 Керамзитобетон на кварцевом песке с поризацией

4

8

34 Керамзитобетон на перлитовом песке

9

13

35 Шунгизитобетон

4

7

36 Перлитобетон

10

15

37 Шлакопемзобетон (термозитобетон)

5

8

38 Шлакопемзопено- и шлакопемзогазобетон

8

11

39 Бетон на доменных гранулированных шлаках

5

8

40 Аглопоритобетон и бетон на топливных (котельных) шлаках

5

8

41 Бетон на зольном гравии

5

8

42 Вермикулитобетон

8

13

43 Полистиролбетон

4

8

44 Газо- и пенобетон, газо- и пеносиликат

8

12

45 Газо- и пенозолобетон

15

22

46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе

1

2

47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе

1,5

3

48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе

2

4

49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе

2

4

50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе

2

4

51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе

1,5

3

52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе

1

2

53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе

2

4

54 Древесина

15

20

55 Фанера клееная

10

13

56 Картон облицовочный

5

10

57 Картон строительный многослойный

6

12

58 Железобетон

2

3

59 Бетон на гравии или щебне из природного камня

2

3

60 Раствор цементно-песчаный

2

4

61 Раствор сложный (песок, известь, цемент)

2

4

62 Раствор известково-песчаный

2

4

63 Гранит, гнейс и базальт

64 Мрамор

65 Известняк

2

3

66 Туф

3

5

67 Листы асбестоцементные плоские

2

3

Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность

Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором. Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов. Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
Влажность – злокачественный фактор, повышающий скорость прохождения тепла

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.

«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Что это такое

Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.

Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.

В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.

Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления

R = H/λ, где

  • R – нормативное температурное сопротивление.
  • H – толщина в метрах.
  • λ – значение проводимости.

Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.

Особенности выбора на основе этих показателей

Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей

Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.

При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.

Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.

Технические характеристики фанеры

Прочность и плотность фанеры

Прочность фанеры зависит от характеристик исходной древесины и прочности склеивания. На прочность косвенно указывает плотность материала. Как правило, плотность фанеры колеблется в пределах 550—750 кг/м3, то есть, примерно соответствует плотности древесины или несколько превышает ее из-за более высокой плотности смолы, которой скрепляется шпон.

В ГОСТ для обычной фанеры предусмотрены разные уровни плотности – от 300 до 1000 кг. Низкий удельный вес возможен при использовании легкой древесины и «рыхлого» шпона. Утяжеление происходит из-за применения более плотных смол и других особенностей изготовления конкретного вида материала. Например бакелизированная фанера может иметь плотность до 1200 кг/м3. Она же отличается наибольшей прочностью.

Главные, наиболее важные показатели прочности фанеры – это предел прочности при изгибе, прочность удержания крепежа. Прочность фанеры марок ФСФ и ФК на изгиб примерно в 3—4 раза ниже, чем у цельной древесины. Марки ФБС и ФБВ по прочности превосходят исходную древесину. Сопротивление шурупов выдергиванию довольно высоко за счет выраженной слоистой структуры (при установке в пласть) и достигает 6—8 кг на каждый миллиметр длины крепежа.

Экологичность

Экологические свойства фанеры характеризуются ее классом эмиссии. Самая лучшая в этом отношении марка – ФБА. В ней совсем нет синтетических материалов.

Все остальные марки фанеры в той или иной степени являются источниками летучего формальдегида. Для использования в жилых помещениях следует выбирать материалы с классом эмиссии Е1 и ниже. Интересно, что в ГОСТ для ламинированной фанеры предусмотрен только класс Е1.

Биологическая стойкость

Фанера не застрахована от поражения гнилью, синевой (для хвойных пород), плесенью. Однако устойчивость фанеры к биологическому и поражению выше, чем у обычной древесины. Это обусловлено тем, что шпон находится в непосредственном контакте с фенольными или карбамидными смолами, которые частично выполняют функции антисептика. Хвойный шпон имеет более высокую сопротивляемость за счет особенностей древесины. Наибольшей стойкостью обладает бакелизированная фанера.

В любом случае следует учитывать условия эксплуатации материала и выбирать подходящий для них или проводить дополнительную антисептическую обработку.

Горючесть

Фанера относится к сильно горючим материалам. Это обязательно нужно учитывать при ее применении. Повысить огнестойкость конструкций и изделий из нее можно специальной обработкой. Есть и особый, трудно горючий сорт фанеры – ФСФ-ТВ.

Влагостойкость

Влагостойкость наиболее популярных сортов ФСФ и ФК демонстрирует испытание на расслоение листа, которое проводится после сильного увлажнения. Фанеру ФК перед испытанием вымачивают в воде в течение 24 часов, марка ФСФ подвергается кипячению в течение часа, а по согласованию с заказчиком – в течение 6 часов. Марки ФБС и ФБВ также подвергаются часовому кипячению.

После обработки водой и высушивания предел прочности на скалывание по клеевому слою для разных марок составляет:

  • ФК и ФСФ – от 2 до 10 кгс/см2 (0,2—1 МПа);
  • ФБВ – 14,7 кг/см2;
  • ФБС – 17,6 кг/см2.

Марка ФБС подходит для тропического климата и других сложных условий.

Изоляционные свойства

Фанера может использоваться в составе внешних ограждающих конструкций. При таком применении учитываются ее изоляционные качества.

Проницаемость для влаги.

Любая фанера способна впитывать воду, и потому проницаема для влаги. Однако влагопроницаемость материала имеет капиллярный характер и зависит от типа пропитки. В любом случае, при увлажнении одной стороны влага проникнет на противоположную и может передаваться на смежные слои ограждающей конструкции.

Теплопроводность.

Теплопроводность фанеры зависит от ее плотности и может колебаться от 0,09 до 0,25 Вт/(м∙К). Для самых используемых марок теплопроводность материала близка к древесине.

Паропроницаемость.

Проницаемость для водяного пара – важный параметр, который учитывается при расчетах многослойных конструкций, ограждающих помещения с искусственным микроклиматом.

Паропроницаемость фанеры примерно втрое ниже, чем проницаемость древесины в направлении поперек волокон, и впятеро ниже, чем проницаемость кирпичной кладки. Это свойство в некоторых случаях можно использовать для пароизоляции стен изнутри, и обязательно нужно учитывать при использовании фанеры для внешней обшивки.

Расчет толщины стен

Стены должны быть теплыми! Что такое теплые? Это по теплопроводности опережающие СНиП! Для начала нужно разобраться какими они должны быть в соответствии со СНиПом. Это не так сложно, как кажется на первый взгляд.

Первым делом возникает вопрос: «а сколько дней в году длиться отопительный сезон?», может нам вообще ничего отапливать не надо и живем мы в Индии. Однако суровые реальности подсказывают, что из 365 дней 202 температура воздуха ≤ 8 °C. Но это в моей Липецкой области, а в вашей наверняка другие цифры. Какие? На этот вопрос вам ответит СНиП 23-01-99. В нем ищем таблицу №1 в ней ищем 11 столбик и свой населенный пункт. Цифра на пересечении и есть количество дней где температура ниже 8 градусов.

Зачем все это было нужно? Для того чтобы открыть СНиП 23-02-2003, найти в нем формулу, и определить градусо-сутки отопительного периода. Величина показывает температурную разницу наружного и внутреннего воздуха, то есть «на сколько нагревать». Умноженную на количество этих суток, то есть «сколько суток нагревать»

Ну узнали. Толк-то от этого какой? А такой! На Данном этапе мы получаем какую-то цифру, в моем случае получилась 5050. По этой цифре, того же самого СНиПа в таблице 4 ищем чему равно нормируемое значение сопротивление теплопередаче стен (3-й столбик). Получается что-то между 2,8-3,5 путем интерполяции находим точное значение (если надо и интересно) или берем максимальное. У меня получилось 3,2°С/Вт.

Теперь, чтобы посчитать толщину стены, нам необходимо воспользоваться формулой R = s / λ (м2•°С/Вт). Где R — сопротивление теплопередаче, s — толщина стены (м), а λ — теплопроводность. Теперь представим, что мы решили построить свою стену из газосиликатных блоков, полностью. В моем случае это блоки Липецкого силикатного завода. Нужно узнать коэффициент теплопроводности. Для этого идем на сайт производителя вашего материала, находим свой материал и смотрим описания характеристик. В моем случае это блоки из ячеистого бетона и коэффициент теплопроводности равен 0,10-0,14. Возьмем 0,14 (влажность и все такое). По вышеуказанной формуле нам нужно найти S. S = R * λ, то есть S = 3,2 * 0,14 = 0,45 м.

Хорошая получилась стена. И дорогая. Наверное есть способ сэкономить. Что если мы возьмем блок толщиной 20 см и сделаем из него стену. Получим сопротивление теплопередачи у такой стены равное 1,43 (м2•°С/Вт), а в нашем регионе 3,2 (м2•°С/Вт). Маловато будет! А что если мы сделаем многослойную стену и снаружи стены используем пенопласт, а лучше минеральную вату, потому как они с примерно одинаковыми коэффициентами теплопроводности, но минвата экологически чище и не горит к томуже. Да и мышки ее как-то не жалуют. Нам осталось добрать теплопередачи. 3,2 — 1,43 = 1,77 (м2•°С/Вт). Теперь тут опять все просто. Так как стена у меня трехслойная и снаружи еще обложена кирпичом, то нужно подобрать утеплитель который лучше всего подходит для этого дела. Я выбрал ROCKWOOL КАВИТИ БАТТС максимально обозначенная теплопроводность у него λ = 0,041 Вт/(м·К) по ней и посчитал, S = 1.77 * 0.041 = 0.072. У меня получилась стена из газосиликатного блока 20 см и 7 см каменной ваты. Согласитесь лучше чем 45 см газосиликата? А может плюнуть на все и сделать каркасник с утеплителем? Можно))) в Канаде и многих европейских странах все так и делают. Но мы то русские! Поэтому обложим все это хозяйство облицовочным кирпичом, и будет у нас красиво и практично! Почему мы в расчет не принимали облицовочный кирпич? Просто он не несет никаких энергосберегающих функций. Более того в нем необходимо сделать вентиляционные зазоры. Но это уже другая история.

В конечном итоге, решив, что требования СНиПов постоянно повышаются, я сделал утеплитель толщиной 10 см. Тем более, что стоило это не на много дороже.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающихконструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

Таблица теплопроводности утеплителей.

где, H толщина слоя, м,

R сопротивление теплопередаче, (м2*°С)/Вт,

λ коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение,
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 Строительная климатология,
  • СНиП 23-02-2003 Тепловая защита зданий,
  • СП 23-101-2004 Проектирование тепловой защиты зданий.

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Теплотехнический расчет.

Приступаем непосредственно к теплотехническому расчету, а именно — нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.В первую очередь — определяем норму тепловой защиты из условий соблюдения санитарных норм.Согласно формулы 3 из СНиП 23-02-2003 «Тепловая защита зданий» рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:

где:n = 1 — коэффициент, принятый по таблице 6, из СНиП 23-02-2003 «Тепловая защита зданий» для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);

tint = 20°С — оптимальная температура в помещении, из исходных данных;

text = -30°С — температура наиболее холодной пятидневки, значение из исходных данных;

Δtn = 4°С — данный показатель принимается по таблице 5, из СНиП 23-02-2003 «Тепловая защита зданий» он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);

αint = 8,7 Вт/(м2×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 «Тепловая защита зданий» для наружных стен.

Выполняем расчет:

получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;

Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.

Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий»:

Dd = (tint — tht)zht = (20 + 4,0)*214 = 5136°С×сут

Примечание: градусо-сутки ещё имеют сокращенное обозначение — ГСОП.

Далее, согласно СНиП 23-02-2003 «Тепловая защита зданий» в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:

Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,

где: Dd — градусо-сутки отопительного периода в г. Муром,

a и b — коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 «Тепловая защита зданий» для стен жилого здания.таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;

Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;

Определение толщины утеплителя

Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:

где:δi- толщина слоя, мм;λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

Рассчитываем термическое сопротивление для каждого слоя1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:

где:

Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности,

αext принимается по таблице 14 для наружных стен;

ΣRi = 0,116 + 0,104 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт

Толщина утеплителя равна:

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.

Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором «Теплотехнический расчет стены», где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.

строительство дома

строительные технологии

  • Добавить комментарий
  • 1335 просмотров

Теплопроводность – что это такое

Теплопроводностью называется способность всех видов газов, жидкости или материалов передавать тепло. Это значит, что когда объект нагревается с одной стороны, он трансформируется в теплопроводник, т.к. передает свою энергию дальше. При охлаждении процесс происходит также.

Например, если во время приготовления пищи перемешивать продукты деревянной лопаткой, то изменений в температуре не последует. Но, если для этих целей использовать кухонную утварь из металла, то она быстро нагреется так, что держать ее станет в руке невозможно. Таких примеров теплопроводности привести можно немало.

Объяснение этого с точки зрения физики: тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. Причем ей требуется время, чтобы пройти через стройматериал. Чем больше его нужно, тем ниже скорость передачи тепла.

Внимание!

Если температура по обе стороны используемого материала одинаковая, то переход тепловой энергии не состоится.

Так,

  • теплопроводность кирпича и стали составляет 0,56 и 58Вт/м●К соответственно;
  • древесины – 0,09-0,1;
  • песка – 0,35

Можно заметить, что не все материалы обладают одинаковой теплоэффективностью, это зависит от факторов:

  1. Пористая структура свидетельствует о ее неоднородности и наличии воздуха в порах.
  2. Структура пор – небольшие размеры и их замкнутость приводит к снижению теплового потока.
  3. Плотность – чем она выше, тем больше коэффициент проводимости тепла.
  4. Влажность – негативный фактор, который повышает скорость теплопередачи. Поэтому надо качественно произвести гидроизоляцию сооружения, правильно сделать вентиляцию и использовать влагоустойчивые стройматериалы.

Формула теплопроводности создана с учетом воздействия температуры на это свойство материала. Выглядит она так:

λ=λ0●(1+b●t), где

  • λ0 — коэффициент теплопроводности при 0°С, измеряется который в Вт/м●℃;
  • b – справочная величина температуры;
  • t – непосредственно температура.

Коэффициент теплопроводности

Зачастую в паспорте стройматериалов указан коэффициент теплопроводности – единица измерения которого Вт/(м●℃). Она характеризует любой материал как проводник тепла. В формуле она определяется греческой буквой λ.

Внимание!

Часто в формулах можно увидеть не градусы по Цельсию, а по Кельвину, обозначающиеся как K. Суть от этого не меняется.

Данный коэффициент демонстрирует способность используемого материала передавать тепло на определенную дистанцию за время. При этом показатель определяет именно сырье, а его размеры значения не имеют.

Рассчитать коэффициент теплообмена можно для материала строительного и иного назначения. Например, коэффициент теплоотдачи стали использовать как теплоотвод или теплообменник. Но для больше части стройматериалов ситуация обратная – чем меньше этот показатель для стен, тем меньше тепла здание потеряет зимой.

Сопротивление теплопередаче

Коэффициент теплопередачи – это показатель, характеризующий используемый материал. Но, как показывает практика, лучше оперировать какой-то величиной, которая будет описывать теплопроводные способности определенного сооружения. Иными словами, учитываться должны особенности его строения и параметров.

Термическое сопротивление – это и есть такая величина. Можно считать, что она обратная коэффициенту теплопроводности и учитывающая толщину стройматериала. Для этого показателя существует следующее обозначение – R. Формула при этом выглядит следующим образом:

R = h/λ, где

  • R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²•℃/Вт;
  • h — толщина этого слоя в метрах;
  • λ — коэффициент теплопроводности материала конструкции, Вт/(м•℃).

Часто стены сооружают многослойными, один слой при этом – утеплитель с низким коэффициентом теплопроводности. Благодаря такому подходу нужный показатель повышается. Это связано с тем, что надо прибавить все слои сопротивления теплопередаче, из которых состоит ограждающая конструкция. Не стоит забывать и о суммировании приграничных слоев воздуха внутри и снаружи сооружения.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.