Теплопроводность газов

Алан-э-Дейл       03.09.2022 г.

Главные критерии

Самые основные показатели для топочного материала: плотность, влажность и отдача тепла. Они все тесно между собой связаны и формируют в какой степени практичным и полезным считается горение дров. Необходимо рассмотреть любой из них более детально, принимая к сведению разнообразные породы дерева и способы ее заготовки.

Во первых, на что свое внимание обращает правильный потребитель при заказе топочного материала из дерева — это его плотность. Чем выше данный показатель, тем качественнее считается порода. Все древесные породы делят на три ключевые категории:

Все древесные породы делят на три ключевые категории:

  • малоплотные (мягкие);
  • среднеплотные (сдержанно твёрдые);
  • высокоплотные (твёрдые).

Рекомендуем прочесть публикацию о том, какие типы дров бывают Плюс ко всему к этому материалу.

Категории разновидностей древесины по их плотности (кг/м 3 )

У любой из них различная плотность, а это означает и удельная теплота сгорания дров. Самыми качественными считаются твёрдые сорта. Они долго горят и подчеркивают больше тепла. Они также создают много углей, которые поддерживают жар в камере сгорания.

Из-за собственной твердости такие дрова тяжело поддаются отделке, благодаря этому некоторые потребители любят среднеплотную древесину, к примеру, березу или ясень. Их структура дает возможность без больших трудов колоть поленья ручным способом.

Второй показатель — это влажность, другими словами в процентном отношении содержание в древесной структуре воды. Чем выше это значение, тем больше плотность, при этом применяемый ресурс выделит меньше тепла при одинаково потраченных усилиях.

Удельная теплота сгорания сухих дров из березы отличается, как более продуктивная, чем влажных. Нужно отметить такую характерность березы: ее можно ложить в топочную камеру почти что сразу же после рубки, она ведь выделяется умеренной влажностью. Для максимизации полезного эффекта лучше приготовить материал подобающим образом.

Соотношение уровня просушки дров и их плотности для самых разнообразных пород

Для увеличения качества древесины благодаря уменьшению процента содержания в ней влаги используются эти подходы:

  • Свежие дрова оставляют на конкретный промежуток времени под выступом крыши для усушки. Кол-во дней зависит от сезона и колеблется от 80 до 310 дней.
  • Часть дров сушат в помещении, что увеличивает их теплотворную способность.
  • Хороший вариант — искусственная просушка. Теплотворность выводится на самый большой уровень за счёт доведения процента влаги до нуля, а времени на подготовку древесины требуется минимум.

Отдача тепла

Подобный показатель, как отдача тепла дров как бы подытоживает предыдущие две характеристики. Конкретно он указывает на то сколько тепла может дать материал который выбран при воплощении определенных условий.

Самой большой считается теплота сгорания дров у твёрдых пород. Исходя из этого противоположным образом дела обстоят с мягкой древесиной. При равных условиях и естественной усушке разница в показаниях достигает практически 100%. Собственно поэтому для экономии средств имеет смысл приобрести намного дорогие в закупке высококачественные дрова, так как их выработка более продуктивная.

Теплотворность различных пород дерева и их плотность при естественной усушке

Тут необходимо упомянуть это свойство, как температура горения дров. Самой большой она считается у граба, бука и ясеня, более 1000 градусов по Цельсию, при этом выполняется очень много жара на уровне 85-87%. К ним приближаются дуб и лиственница, а наименьшими показателями выделяются тополь и ольха с выработкой 39-47% при температуре в районе 500 градусов.

Заправка сжиженным газом: нормы безопасности

  • В процессе заполнения резервуара используется продувка.
  • Безопасное наполнение газгольдера должно происходить при соблюдении требований безопасности. Это обязательно, так как несоблюдение любого из пунктов этого списка может привести к тяжелым последствиям, в том числе сбою работы газопровода, возгоранию и взрыву.
  • Запрещается допускать любой источник искр, в том числе под запрет ставят курение, сварку, резку металла и даже использование мобильных гаджетов.
  • Перед началом работы автоцистерну закрепляют деревянными подпорками, чтобы закрепить установку, исключить скатывание газовоза и возникновение форсмажорной ситуации.
  • Категорически запрещено оставлять оборудование без присмотра ни на минуту.
  • Шланг крепят с помощью хомутов.
  • В заправочном процессе принимают как минимум два человека.
  • Одежда заправщиков должна быть сделана из специальной ткани и защищать руки и ноги. Это необходимо, потому что при попадании жидких газов на открытый участок тела может появиться ожог.
  • Емкость должна быть заполнена не более чем на 85 процентов, так как иначе давление внутри газохранилища может повыситься до недопустимых показателей.
  • Когда давление превышает допустимую границу, срочно отключают компрессор, или испаритель.
  • Заправлять емкость можно только в светлое время суток – утром, или днем. Запрещаются все операции, связанные с заправкой газгольдеров при грозе.

Калорийность природного газа ккал м3

Информация

Форма входа

Статьи о ВО

Физические величины

Тепловая мощность отопительного оборудования обычно представлена в киловаттах (кВт), килокалориях в час (ккалч) или в мегаджоулях в час (МДжч).

1 кВт = 0,86 ккал/ч = 3,6 МДж/ч

Расход энергии измеряют в киловатт – часах (кВтч), килокалориях (ккал) или в мегаджоулях (МДж).

1 кВтч = 0,86 ккал = 3,6 МДж

Большинство бытовых отопительных приборов имеет мощность в

пределах 10 – 45 кВт.

Природный газ

Расход природного газа принято измерять в кубических метрах (м3). Эту величину фиксирует Ваш газовый счетчик и именно ее записывает работник газового хозяйства, когда снимает показания. Один кубический метр природного газа содержит 37,5 МДж или 8 958 ккал энергии.

Пропан (сжиженный газ, СУГ)*

Расход пропана принято измерять в литрах (л). Один литр пропана содержит 25,3 МДж или 6 044 ккал энергии. В основном, все правила и понятия, действующие для природного газа, подходят и для пропана, с небольшой поправкой на калорийность. У пропана более низкое содержание водорода, чем у природного газа. При сжигании пропана количество тепла, высвобождающегося в скрытой форме, примерно на 3% меньше, чем у природного газа. Это говорит о том, что традиционные фурнасы, работающие на пропане чуть более производительны, чем работающие на природном газе. С другой стороны, когда мы имеем дело с высокоэффективными конденсационными нагревателями, то пониженное содержание водорода усложняет процесс конденсации и пропановые нагреватели немного проигрывают тем, что работают на природном газе.

* В отличие от Канады, в Украине распространен не чистый пропан, а пропан – бутановые смеси, в которых доля пропана может колебаться от 20 до 80 %. Бутан имеет калорийность 6 742 ккалл

Важно помнить, что температура кипения пропана составляет минус 43°C, а температура кипения бутана – лишь минус 0,5 °C. Практически это приводит к тому, что при высоком содержании бутана в баллоне с газом на морозе газ из баллона не испаряется без дополнительного подогрева

Теплотворная способность различных видов топлива. Сравнительный анализ

(рис. 14.1 – Теплотворная способность топлива)

Обратите внимание на теплотворную способность (удельную теплоту сгорания) различных видов топлива, сравните показатели. Теплотворная способность топлива характеризует количество теплоты, выделяемое при полном сгорании топлива массой 1 кг или объёмом 1 м³ (1 л)

Наиболее часто теплотворная способность измеряется в Дж/кг (Дж/м³; Дж/л). Чем выше удельная теплота сгорания топлива, тем меньше его расход. Поэтому теплотворная способность является одной из наиболее значимых характеристик топлива. Удельная теплота сгорания каждого вида топлива зависит:

  • От его горючих составляющих (углерода, водорода, летучей горючей серы и др.).
  • От его влажности и зольности.
Таблица 4 — Удельная теплота сгорания различных энергоносителей, сравнительный анализ расходов.
Вид энергоносителя Теплотворная способность Объёмная плотность вещества (ρ=m/V) Цена за единицу условного топлива Коэфф. полезного действия (КПД) системы отопления, % Цена за 1 кВт·ч Реализуемые системы
МДж кВт·ч
(1Мдж=0.278кВт·ч)
Электричество 1,0 кВт·ч 3,70р. за кВт·ч 98% 3,78р. Отопление, горячее водоснабжение (ГВС), кондиционирование, приготовление пищи
Метан (CH4, температура кипения: -161,6 °C) 39,8 МДж/м³ 11,1 кВт·ч/м³ 0,72 кг/м³ 5,20р. за м³ 94% 0,50р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Пропан (C3H8, температура кипения: -42.1 °C) 46,34 МДж/кг 23,63 МДж/л 12,88 кВт·ч/кг 6,57 кВт·ч/л 0,51 кг/л 18,00р. за л 94% 2,91р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Бутан C4H10, температура кипения: -0,5 °C) 47,20 МДж/кг 27,38 МДж/л 13,12 кВт·ч/кг 7,61 кВт·ч/л 0,58 кг/л 14,00р. за л 94% 1,96р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Пропан-бутан (СУГ — сжиженный углеводородный газ) 46,8 МДж/кг 25,3 МДж/л 13,0 кВт·ч/кг 7,0 кВт·ч/л 0,54 кг/л 16,00р. за л 94% 2,42р. Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение
Дизельное топливо 42,7 МДж/кг 11,9 кВт·ч/кг 0,85 кг/л 30,00р. за кг 92% 2,75р. Отопление (нагрев воды и выработка электричества – очень затратны)
Дрова (берёзовые, влажность — 12%) 15,0 МДж/кг 4,2 кВт·ч/кг 0,47-0,72 кг/дм³ 3,00р. за кг 90% 0,80р. Отопление (неудобно готовить пищу, практически невозможно получать горячую воду)
Каменный уголь 22,0 МДж/кг 6,1 кВт·ч/кг 1200-1500 кг/м³ 7,70р. за кг 90% 1,40р. Отопление
МАРР газ (смесь сжиженного нефтяного газа — 56% с метилацетилен-пропадиеном — 44%) 89,6 МДж/кг 24,9 кВт·ч/м³ 0,1137 кг/дм³ -р. за м³ 0% Отопление, горячее водоснабжение (ГВС), приготовления пищи, резервное и постоянное электроснабжение, автономный септик (канализация), уличные инфракрасные обогреватели, уличные барбекю, камины, бани, дизайнерское освещение

(рис. 14.2 – Удельная теплота сгорания)

Согласно таблице «Удельная теплота сгорания различных энергоносителей, сравнительный анализ расходов», пропан-бутан (сжиженный углеводородный газ) уступает в экономической выгоде и перспективности использования только природному газу (метану)

Однако следует обратить внимание на тенденцию к неизбежному росту стоимости магистрального газа, которая на сегодняшний день существенно занижена. Аналитики предрекают неминуемую реорганизацию отрасли, которая приведёт к существенному удорожанию природного газа, возможно, даже превысит стоимость дизельного топлива

Таким образом, сжиженный углеводородный газ, стоимость которого практически не изменится, остаётся исключительно перспективным – оптимальным решением для систем автономной газификации.

Способы определения

Брутто и нетто

В 1972 г. Зволински и Уилхойт определили «брутто» и «нетто» значения теплоты сгорания. По общему определению продукты являются наиболее стабильными соединениями, например, H2O (l), Br2(л), я2(s) и H2ТАК4(л). В сетевом определении продукты — это продукты, полученные при сжигании компаунда в открытом пламени, например H2O (г) Br2(г) я2(g) и SO2(грамм). В обоих определениях продуктами для C, F, Cl и N являются CO.2(г) HF (г) Cl2(g) и N2(g) соответственно.

Более высокая теплотворная способность

Более высокое значение нагрева (ВГЧ; полная энергия , верхнее значение нагрева , теплотворность GCV , или более высокое значение теплотворной ; ВГС ) указывает верхний предел доступной тепловой энергии , вырабатываемой с помощью полного сгорания топлива. Он измеряется как единица энергии на единицу массы или объема вещества. HHV определяется путем приведения всех продуктов сгорания к исходной температуре перед сгоранием и, в частности, конденсации любого образующегося пара. Для таких измерений часто используется стандартная температура 25 ° C (77 ° F; 298 K). Это то же самое, что и термодинамическая теплота сгорания, поскольку изменение энтальпии для реакции предполагает общую температуру соединений до и после сгорания, и в этом случае вода, полученная при сгорании, конденсируется в жидкость. Чем выше значение нагрева учитывает скрытую теплоту парообразования из воды в продуктах сгорания, и является полезным при вычислении значения нагрева для топлива , где конденсации продуктов реакции является практичной (например, в газовом топливе котла , используемый для космического тепла) . Другими словами, HHV предполагает, что весь водный компонент находится в жидком состоянии в конце сгорания (в продукте сгорания) и что тепло, выделяемое при температурах ниже 150 ° C (302 ° F), может быть использовано.

Низкая теплотворная способность

Нижняя теплотворная способность (LHV; низшая теплотворная способность ; NCV или более низкая теплотворная способность ; LCV ) — еще одна мера доступной тепловой энергии, производимой при сгорании топлива, и измеряется как единица энергии на единицу массы или объема вещества. В отличие от HHV, LHV учитывает потери энергии, такие как энергия, используемая для испарения воды, хотя его точное определение не согласовано однозначно. Одно определение — просто вычесть теплоту испарения воды из более высокой теплотворной способности. Это рассматривает любую образовавшуюся H 2 O как пар. Таким образом, энергия, необходимая для испарения воды, не выделяется в виде тепла.

Расчеты LHV предполагают, что водный компонент процесса сгорания находится в парообразном состоянии в конце сгорания, в отличие от более высокой теплотворной способности (HHV) (также известной как высшая теплотворная способность или брутто CV ), которая предполагает, что вся вода в процессе сгорания процесс находится в жидком состоянии после процесса сгорания.

Другое определение LHV — это количество тепла, выделяемого при охлаждении продуктов до 150 ° C (302 ° F). Это означает , что скрытая теплота парообразования из воды и других продуктов реакции не восстанавливается. Это полезно при сравнении видов топлива, в которых конденсация продуктов сгорания нецелесообразна или тепло при температуре ниже 150 ° C (302 ° F) невозможно использовать.

Одно определение более низкой теплотворной способности, принятое Американским институтом нефти (API), использует стандартную температуру 60 ° F ( 15+5 ⁄ 9  ° C).

Другое определение, используемое Ассоциацией поставщиков газоперерабатывающих предприятий (GPSA) и первоначально используемое API (данные, собранные для исследовательского проекта API 44), — это энтальпия всех продуктов сгорания за вычетом энтальпии топлива при эталонной температуре (использовался исследовательский проект API 44. 25 ° C. В настоящее время GPSA использует 60 ° F) минус энтальпия стехиометрического кислорода (O 2 ) при эталонной температуре, минус теплота испарения паросодержащих продуктов сгорания.

Определение, в котором все продукты сгорания возвращаются к эталонной температуре, легче рассчитать исходя из более высокой теплотворной способности, чем при использовании других определений, и фактически даст несколько иной ответ.

Брутто теплотворная способность

Полная теплотворная способность учитывает воду в выхлопе, уходящую в виде пара, как и LHV, но полная теплотворная способность также включает жидкую воду в топливе перед сгоранием

Это значение важно для таких видов топлива, как древесина или уголь , которые обычно содержат некоторое количество воды перед сжиганием.

Особенности сжиженного углеводородного газа

Это топливо обладает рядом свойств, благодаря которым они легко могут переходить из состояния пара в жидкость. Хранятся, транспортируются, распределяются и используются сжиженные газы под собственным давлением, которое определяет в первую очередь температура окружающей среды. Например, в наземном газгольдере, также как в баллоне и автоцистерне, показатель давления должен быть не больше 16 кг/кв.см. при наружной температуре воздуха 45°С и не меньше 1,6 кг/кв.см, если температура равна -20°С. У емкостей, которые располагаются под землей, рабочее давление не допустимо более 10 кг/см2. Остаточное давление не должно превышать 0,5 кг/ см2.

Цены на топливо

Благодаря сводкам сравнительного анализа определяют перспективу использования метана или солярки. Цена газа в централизованном газопроводе имеет склонность к повышению. Она может оказаться выше даже дизельного топлива. Именно поэтому стоимость сжиженного углеводородного газа почти не поменяется, а его использование останется единственным решением при установке независимой системы газификации.

Существует несколько видов наименования горюче-смазочных материалов (ГСМ): твёрдого, жидкого, газообразного и некоторых других легковоспламеняющихся материалов, в которых при тепловыделяющей реакции закисления ГСМ его химическая теплоэнергия переходит в температурное излучение.

Напоследок о сжигании угольной пыли

Мелкая фракция, остающаяся от рядового угля, тоже является полноценным топливом. Проблема заключается в загрузке – бо́льшая часть пыли сразу просыпается в зольник. Если загрузить ее поверх дров, перекрывается доступ кислорода, горение ухудшается. В подобных случаях можно применить 3 способа:

  1. Дедовский. Каменноугольная пыль перемешивается с водой, делаются лепешки и высушиваются на солнце.
  2. Брикетирование. Если вы располагаете большим количеством пыли, есть смысл изготовить либо заказать шнековый пресс для формования угольных брикетов в домашних условиях.
  3. Добавить к мелкой фракции воды и загружать в топку в старых полиэтиленовых пакетах.

Последний способ – наиболее простой и быстрый в реализации. Вода добавляется к пыли в соотношении 1 : 10, субстанция тщательно перемешивается и раскладывается по пакетам. Котел разгоняется до рабочей температуры на дровах, затем в топку загружается 2—3 таких порции. Подробнее о методе рассказывается на видео:

Уголь

Это природный материал растительного происхождения, добываемый из осадочной породы.

В таком виде твердого топлива содержатся углерод и прочие химические элементы. Существует деление материала на типы в зависимости от его возраста. Самым молодым считается бурый уголь, за ним идет каменный, а старше всех остальных типов – антрацит. Возрастом горючего вещества определяется и его влажность, которая в большей степени присутствует в молодом материале.

В процессе горения угля происходит загрязнение окружающей среды, а на колосниках котла образуется шлак, создающий в определенной мере препятствие для нормального горения. Наличие серы в материале также является неблагоприятным для атмосферы фактором, поскольку в воздушном пространстве этот элемент преобразуется в серную кислоту.

Однако потребители не должны опасаться за свое здоровье. Производители этого материала, заботясь о частных клиентах, стремятся уменьшить содержание в нем серы. Теплота сгорания угля может отличаться даже в пределах одного типа. Разница зависит от характеристик подвида и содержания в нем минеральных веществ, а также географии добычи. В качестве твердого топлива встречается не только чистый уголь, но и низкообогащенный угольный шлак, прессованный в брикеты.

Вид угля Удельная теплота сгорания материала
кДж/кг ккал/кг
Бурый 14 700 3 500
Каменный 29 300 7 000
Антрацит 31 000 7 400

Топливо и его горение

Основным источником энергии для металлургической промышленности является топливо.

Под топливом понимают вещество, горение которого сопровождается выделением значительного количества тепла и которое отвечает следующим требованиям:

  1. запасы должны быть достаточными для того, чтобы их было экономически выгодно добывать и попользовать;

  2. продукты сгорания должны легко удаляться из  зоны горения;

  3. продукты сгорания должны быть безвредны для окружающего мира и самих тепловых устройств;

  4. процесс горения должен быть легко управляем.

Этим требованиям отвечают органические соединения, содержащие углерод С и водород Н и их соединения.

Все виды топлива подразделяют на естественное и искусственное, каждое из которых в свою очередь подразделяются на твердое, жидкое, газообразное.

Химический состав топлива.

Топливо состоят из горючей массы и балласта. К горючим компонентам относятся С, Н, S (сера органическая и колчеданная). В состав топлива входят азот N (не горит, теплоноситель), кислород О (окисляет горючие компоненты).

Кроме этого в топливе всегда присутствуют вода и зола. Вода, содержащаяся в топливе, подразделяется на гигроскопическую, химически связанную и внешнюю, которая механически удерживается в топливе и теряется при сушке.

Зола – это негорючая минеральная часть топлива, состоящая из Al2O3, Fe2O3, Si2O3, CaO и др.

Элементарный анализ топлива.

Индекс

Состав

C

H

O

N

S

A

W

О

органическая масса

     

Г

горючая масса

   

С

сухая масса

 

Р

рабочая масса

Состав рабочего топлива:

СР + HР + OР + NР + SР + AР + WР = 100%

Пересчет состава топлива с любой массы на рабочее топливо выполняется по одному из следующих выражений:

Теплота сгорания топлива.

Количество выделившегося тепла при сжигании топлива связано с химическим составом топлива.

Количество тепла, которое выделяется при сжигании единицы топлива, называется теплотой сгорания топлива Q. Ее размерности: кДж/кг (ккал/кг), кДж/м3 (ккал/м3) или кДж/кмоль (ккал/кмоль).

В технике различают высшую Qв и низшую Qн теплоту сгорания топлива. Под низшей теплотой сгорания понимают то количество тепла, которое выделяется при сжигании единицы топлива до продуктов полного сжигания при условии, что вода, содержащаяся в продуктах сгорания, находится в виде пара, охлажденного до 20оС.

Теплота сгорания топлива определяется по следующим формулам:

для твердого и жидкого топлива:

для газообразного:

,

где CP, HP, CO, H2 и т.д. – составляющие топлив, %;

4, 187кДж = 1ккал.

Условное топливо.

Для удобства планирования, учета и сравнения различных видов топлива введено понятие условного топлива, которое характеризуется низшей теплотой сгорания

.

Для перевода натурального топлива в условное находится эквивалент данного топлива:

для твердого и жидкого:

для газообразного:

.

Перерасчет расхода натурального топлива Вр на условное Ву осуществляется по формуле:

Газообразное топливо.

Газообразное топливо по сравнению с твердым и жидким топливом обладает следующими преимуществами:

  1. возможностью лучшего смешения газа с воздухом и, следовательно, сжиганием с меньшим избытком воздуха;

  2. легкостью подогрева перед сжиганием;

  3. отсутствием золы;

  4. транспортабельностью и удобством учета расхода газа;

  5. простотой обслуживания горелочных устройств.

Недостатки: взрывоопасность, малая объемная масса (требуются большие емкости для хранения).

Природный газ – наиболее дешевое топливо. Его основным горючим компонентом является метан CH4 = 95%.

Искусственные газы:

  1. коксовый газ – продукт коксования углей;

горючие компоненты – Н2 = 46-60%; СН4 = 20-30%; МДж/м3;

  1. доменный (колошниковый) газ получают в процессе доменной плавки, содержит около 30% СО; МДж/м3.

Жидкое топливо.

Естественное жидкое топливо – нефть. Как топливо ее используют редко.

Искусственное жидкое топливо – это продукты переработки нефти: бензин, лигроин, керосин, газойль и др. Остаток переработки – мазут. Мазут – топливо металлургической промышленности и энергетики. Перед сжиганием мазут нагревают до 70-80оС с целью понижения его вязкости. Состав мазута – это соединения углеродов. С = 85-88%; Н2 = 10%; МДж/кг.

Твердое топливо.

Это каменный и бурый угли, антрацит, горючие сланцы, торф.

Основной метод переработки угля – коксование, заключающийся в сухой перегонке топлива путем нагрева угля без доступа воздуха при температурах 900-1100оС в коксовых печах. Получается спекшийся кокс, пористый, механически прочный, применяемый в металлургии, в основном для выплавки чугуна. Содержание С=75-85%; МДж/кг.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.